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Abstract

Database management systems have traditionally been implemented entirely in soft-
ware. However, adding hardware to database cluster servers to gain more speed has
its price. Firstly, the cost of the hardware itself, secondly the increased power
consumption from the numerous processors that have to be used.

The purpose of this study is to investigate how partial run-time reconfiguration
in FPGAs can be used to accelerate databases. It aims to show how an FPGA
based query processor can work in collaboration with a regular software database
to accelerate certain queries.

This thesis proposes a novel way of using dynamic partial reconfiguration in FPGAs
to process arbitrary queries in hardware. We investigate how SQL queries can be
decomposed and turned into hardware modules that are ’stitched’ together at run-
time to form a stream processing datapath. Consequently, a set of customizable
hardware modules that each can implement a range of SQL operators are presented.
In addition, the thesis gives a method for floorplanning a high capacity FPGA for
slot based partial reconfiguration.

In the end, by the help of a case study we can conclude that the main bottleneck
is the interface to the host computer. Another interesting finding is that unlike
conventional databases, the accelerator is not slowed down by a more complex
query. On the contrary, filtering out results actually speeds it up.
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Chapter 1

Introduction

Database management systems have traditionally been implemented entirely in soft-
ware, and are typically run on servers using standard operating systems. High-end
databases utilize multiprocessor computers with lots of memory and RAID disk
arrays to achieve high speed data retrieval and to ensure data resilience. This ap-
proach is a well proven and cost-effective way of dealing with database applications
such as inventory systems found in web shops or travel itinerary databases used
by travel agencies. In contrast, when it comes to high volume database opera-
tions like data mining and analytical processing, conventional databases constitute
a bottleneck. This project aims to demonstrate how to gain performance improve-
ments in databases using run-time reconfigurable field-programmable gate arrays
(FPGAs).

During the 1990s the use of FPGAs in digital electronics increased dramatically.
Due to its ability to adapt a wide variety of circuits it has been used in every-
thing from system on chip (SoC) to digital signal processors, and other kinds of
specialized processors and digital circuitries. It has been embraced by the industry
due to its ability to be reconfigured, and due to the low startup cost of produc-
ing FPGAs compared to application-specific integrated circuits (ASICs). Economic
risks involved with launching new FPGA implementations are low compared to the
enormous cost of having to do a fabrication process re-spin if it turns out an ASIC
implementation has to be discarded.

Also, the reconfigurability means that vendors can offer updates, and sell function-
ality to customers long after the hardware has deployed, with vendors having to
do no more than sending the updates electronically. This is all beneficial, but in
a sense FPGAs have been used merely as an ASIC substitute. This does not uti-
lize the full advantages of reconfigurable hardware over ASICs. Unlike ASICs that
once produced are like cast in stone, certain FPGAs can be run-time reconfigured
or partially reconfigured in a matter of milliseconds. By exploiting this ability,
configuring the FPGA with the required hardware configurations on the fly, an
FPGA will seemingly be bigger than it physically is, and can potentially provide
more on-chip functionality than any ASIC. That is the real technological advan-
tage FPGAs have over ASICs, and what this project is demonstrating for database
acceleration.

Databases are commonly accessed via the Structured Query Language (SQL). SQL
was developed by IBM in the early 1970s and has since become the most popular
query language. For this reason, basing this project on the SQL syntax is the
obvious choice. SQL has been standardized by the American National Standards
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CHAPTER 1. INTRODUCTION

Institute; this standard is referred to as ANSI SQL.

1.1 Problem Description

Conventional databases offer some degree of parallelism. Speed gain from paral-
lelism in cluster servers comes at a cost. It comes at the cost of the hardware
itself and the increased power consumption from the numerous processors that are
used.

One possible solution for increasing performance for such high volume database
operations is turning to dedicated hardware for executing queries. Now, this is
where run-time reconfigurable hardware becomes an interesting option due to some
FPGAs ability to logically change its internal circuit at run-time. Because different
queries inevitably would require a new circuit to be executed in hardware, no static
hardware would be usable for accelerating arbitrary queries.

There are solutions that create dedicated hardware query accelerators for FPGAs
(e.g. Glacier compiler[7]). This works only for a limited number of predefined
queries, and it requires time consuming synthesis and place & route steps for every
possible query. This thesis aims at creating any hardware SQL accelerator on-the-fly
by using partial run-time reconfiguration of FPGAs.

The goal of this project is to show that some queries can be accelerated in hard-
ware by stitching together basic building blocks at run-time. The building blocks
implement SQL operators that are composed together with respect to the currently
executed query.

This means that the system should be able to accelerate SQL queries that are not
known at design time. This approach is only limited by the available SQL operators,
the capacity of the FPGA, or the architecture of the system implemented on the
FPGA.

Figure 1.1: An overview of the system.
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CHAPTER 1. INTRODUCTION

The overall architecture of the FPGA accelerated database system is shown in
Figure 1.1. Without the accelerator an application can interact directly with a
software database. Cross-platform database access is commonly implemented using
the Open Database Connectivity Protocol (ODBC). By inserting a proxy between
the application and the database, it is possible to forward queries that are suitable
for FPGA acceleration to the FPGA. All remaining queries that are not supported
by the FPGA will be forwarded to the original database (which is MySQL in this
case).

The proxy consequently parses queries from the application and manages the FPGA
accelerator hardware. This includes the creation of the query specific accelerators
from the SQL library as well as the data movement. The proxy can store copies
of all or selected tables from the database in local memory attached to the FPGA.
More than 23GB of local memory is available for storing tables or temporary data
on the dedicated hardware. The communication with the FPGA is done via a
fast PCI-express interface. This allows fetching results from the FPGA with up to
2GB/sec.

In addition to the FPGA management and data movement, the proxy ensures data
consistency between the tables stored in the local memory of the FPGA board and
the database running on the host PC. With this system architecture, it should be
possible to support the full functionality of the original database while being able
to accelerate specific queries with the help of the reconfigurable FPGA.

This approach comprises some overhead for parsing queries, composing the accel-
erator, and for configuring the FPGA. However, for queries processing large data
sets (GBs of data) this overhead can be neglected.

Such a database accelerator should act as a helper system to a conventional master
database, taking load of the master database whenever possible. The accelerator
must remain transparent to the application utilizing the database, as if the appli-
cation was talking directly to the master database itself as shown in Figure 1.1.
Queries may be passed on to the master database, or they may be intercepted by
the accelerator, processed, and the results given back to the application without
involving the master database.

1.2 Contribution

The main contribution of this thesis is to show that selected SQL queries can be
accelerated by a run-time reconfigurable hardware in an FPGA. The thesis pro-
poses methods for floorplanning the device to accommodate a reconfigurable data-
path that spans over one continuous region or over several disjoined regions on the
FPGA.

A method is presented for parsing an SQL query and deriving from it a reconfig-
urable datapath consisting of query processing hardware modules. Also, a discussion
is given on how to manage tables in stored in the FPGA near memory.

A set of query processing hardware modules are provided that each can implement
a number of different SQL operators. Through the use of a module initialization
protocol developed in this project, configuration registers in the modules can be
altered after they have been placed on the device.

13



CHAPTER 1. INTRODUCTION

1.3 Chapter Overview

This report is organized into seven chapters and one appendix. Following is a brief
description of each chapter:

Chapter 1, Introduction
In this chapter the background and motivation for developing a database
accelerator is presented. An outline of the desired system is described. Also,
the main contributions of this thesis are stated.

Chapter 2, Maxeler System Description
This chapter gives a description of the Linux workstation that was used in this
project. The hardware was supplied by Maxeler Technologies. A description
of the Maxeler hardware and software is given, and at the end of this chapter
follows a brief summary of the changes that will have to be made to it.

Chapter 3, Reconfiguration
An introduction to the methods and tools that are available for partial recon-
figuration. There is a discussion throughout the chapter on the advantages
and disadvantages of using different methods and tools. We will also decide
which partial reconfiguration methods and tools to use.

Chapter 4, Concepts and Design Decisions
This chapter presents the concepts and methods used in the design process.
The aim of this chapter is to give the reader a deeper understanding of the
different parts of the system, and how they relate to each other. It also
explains how and why principal design decisions were made.

Chapter 5, Implementation
This chapter gives a presentation of the software and hardware that was im-
plemented. Notable obstacles that were faced during the design process are
highlighted and explained. The implemented hardware and how it relates to
the concepts described in Chapter 4 is reviewed.

Chapter 6, Results
This chapter attempts to benchmark the accelerator. We look at a case study
where the accelerator is running a test case query. From the results we identify
two different bottlenecks that govern the performance of the accelerator.

Chapter 7, Conclusion
The principal findings in this thesis are summarized and presented.

Appendix
The appendix contains the most important source code and scripts. The
software developed in this project consists of more than 2500 lines of code,
and the VHDL code is also thousands of lines long. Thus, only the crucial
components needed to reproduce the results are included in the appendix.
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Chapter 2

Maxeler System
Description

Database acceleration required high-performance I/O to both local memory and to
the host computer. For this project, a MAX3 development system from Maxeler
Technologies was selected. The system consists of a fast PC and a built-in FPGA
board featuring a large Xilinx Virtex-6 FPGA. The FPGA is surrounded by 24GB
of local DDR-3 memory (up to 48GB is possible) and the board is integrated in
the PC by using a fast PCI-express interface. The large and fast memory combined
with the provided fast host PC interface makes the MAX3 system an ideal research
platform for this thesis.

Maxeler Technologies provides hardware solutions for accelerating computer inten-
sive software routines. The hardware used in this project was acquired through the
Maxeler University Program (MaxUP).

The Maxeler design flow is based on their Java to hardware compiler. It allows
the design of complex stream processing hardware implementations using a modest
amount of Java code. These Java representations of hardware can be run in a
simulation environment eliminating the need for RTL simulators, and reducing the
amount of hardware builds needed in the development phase.

MaxCompilerRT

MaxelerOS

Host application

FPGA board

Figure 2.1: The Maxeler software stack.

A program that is accelerated by the Maxeler system is referred to as a host ap-
plication. The run-time environment is called the MaxelerOS. This run-time en-
vironment is interfaced by the host application through a program library called

15



CHAPTER 2. MAXELER SYSTEM DESCRIPTION

the MaxelerRT as shown in. The Maxeler software stack is illustrated in Figure
2.1.

2.1 The MaxWorkstation

The hardware provided is basically a desktop computer running the Linux distri-
bution Centos 5 with a PCI-express card mounted inside that contain their ac-
celeration hardware. This PCI-express card that is called MAX3 has a Virtex-6
XC6VSX475T FPGA and 24GB of Dynamic RAM (DRAM) memory mounted on
it. The FPGA is one of the largest devices available today, and has 476,160 logic
cells and 38,304 kb of Block RAM (BRAM).

The DRAM memory is connected via six SODIMM sockets to the FPGA, and the
maximum supported memory size is 48GB. Maxeler provides a high performance
memory controller that accesses all six 64-bit memory modules as one 384-bit wide
channel.

At the maximum DRAM frequency of 400MHz at double data rate, it gives the
theoretical maximum read/write bandwidth of 384/8 ∗ 2 ∗ 400MHz = 38.4GB/s.
For interfacing the host computer with the FPGA board a PCI-express interface is
used. The maximum speed of this connection is 2GB/s in each direction.

2.2 MaxCompiler

The Maxeler Java Compiler is a Java to hardware compiler that is specific to the
Maxeler design flow. The algorithms that need to be accelerated must be written in
Java code using a special Java library. This Java code is then compiled into VHDL
code by the MaxCompiler, and the VHDL code is in turn compiled to hardware by
the regular Xilinx design flow. A slightly modified version of the Eclipse IDE, the
MaxIDE is supplied to ease the Java coding process.

This Java code uses valid Java syntax, but is in reality a simplified hardware de-
scription. It can describe the behavior of stream computation logic accurately, but
on a high level of abstraction. It is not a Register Transfer Level (RTL) description
like VHDL or Verilog.

The hardware components that accelerate software functions in the FPGA are re-
ferred to as kernels or nodes. Several kernels can be run in the accelerator in parallel,
and data streams can go to, from and between each of these.

Figure 2.2 shows the Java code for a simple dataflow kernel and its corresponding
data flow graph. The Java data types HWVar are in fact hardware register values that
are given by the relative offset in the data stream. This particular implementation
calculates a three point average value from a moving window on the data stream,
and outputs it to the host application.

With the release of MaxCompiler version 2011.3, it is also possible to include custom
VHDL or Verilog code and let this take the place of a kernel. This is referred to as
a custom HDL node. The MaxCompiler also generates streams to and from custom
HDL nodes. These streams can have either a push interface with stall and valid

control signals, or a pull interface with empty and read signals. The control logic
for streams is auto generated by the compiler.
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public class MovingAverage extends kernel {

    public MovingAverage(KernelParameters parms, int N) {

        super(parameters);

        // input

        HWVar x = io.input(“x”,hwFloat(8, 24));

        

        // Data

        HWVar prev = stream.offset(x, -1);

        HWVar prev = stream.offset(x, 1);

        HWVar sum = prev + x + next;

        HWVar result = sum / 3;

        // Output

        io.output(“y”, result, hwFloat(8, 24));

    }

}

Figure 2.2: Java source code and corresponding data flow graph for a simple kernel.
Example from Maxeler R&D brochure.

In this thesis the MaxCompiler was used to generate the main communication in-
frastructure. It was used to connect the software part of the query accelerator to
the FPGA-near memory, and to set up the PCI-express streams to and from the
FPGA. The SQL operators themselves are implemented in VHDL.

2.3 MaxelerRT

The MaxelerRT API (Application Programming Interface) is a C library that is
used by the host application to interface with the FPGA and the MAX3 card. An
application that has functions that are accelerated by hardware kernels must use
this library to control the execution of these accelerated functions.

The library has functions for configuring and resetting the FPGA. It has functions
for streaming data to and from the FPGA and to and from the memory. The
streaming of data can be done in several different ways. There is the synchronized
blocking function call, and there are also asynchronized input and output options
that allow the host application to have more detailed control over the transfers
through polling.

The MaxelerRT library acts as an abstraction level between the hardware and the
host application, and any host application must go through it to access the hard-
ware. This library is well suited for our project as it provides a straightforward way
of communicating with the FPGA from a C program.
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CHAPTER 2. MAXELER SYSTEM DESCRIPTION

2.4 MaxelerOS

This is the run-time software environment for the MAX3. It comprises the Linux
device driver and a daemon process that controls and monitors the MAX3 card and
the FPGA. The Maxeler software bundle features several console applications for
things like polling the status of the FPGA and configuring bitstreams to it. The
MaxelerOS can be utilized by host applications through the MaxelerRT API.

The MaxelerOS hides the memory management from the host application. It pro-
vides a simpler command-based interface that the host application can access by
using the MaxelerRT API. Command queues and in-between buffering is handled
transparent to the user. The MaxelerOS is very beneficial to this project as it takes
away the complexity of software and hardware flow control and scheduling, allowing
us to focus on the tasks of interest.

2.5 Adding Custom Hardware to the Maxeler Sys-
tem

To build an FPGA system with a reconfigurable region it is necessary to have the
VHDL code of both the static part of the system and for the partial modules. The
static part of the system is present at any time (e.g. the memory controller) while the
partial modules located in the reconfigurable region alter during run-time.

The Maxeler design flow is hidden in a Makefile environment, and the first step was
dissecting this Makefile to extract the commands used to generate the system. This
enables us to add user constraints and change parameters to the Xilinx tools, which
is also necessary when defining a reconfigurable region.

The modules have a high degree of customization and are developed in VHDL. A
VHDL wrapper component is also needed to connect the partial region to the rest of
the Maxeler system. This means that there needs to be a way to include a custom
VHDL component into the Maxeler project.

When work on this thesis started, there was no straightforward way to include
VHDL code in the Maxeler design flow. The hardware description is meant to be
written in Java and compiled into VHDL code by the MaxCompiler. To try to find
the best way to insert a VHDL component into the design flow, and to gain random
access to the DRAM memory from it, a lot of research and digging into the VHDL
code of compiled projects was done.

With the release of MaxCompiler version 2011.3, New Year 2012, support for in-
cluding custom HDL nodes in the design was added to MaxCompiler. This was
obviously a better way to do this, so all attempts to hack the kernel VHDL descrip-
tion ended here.

The Maxeler system is made for accelerating dataflow computations such as 3D
convolution. A stream’s access pattern to the DRAM is typically controlled by the
host computer, and it follows a pre defined pattern. Random access to the DRAM
has to be implemented manually in the VHDL nodes.

For storing and updating multiple large tables in the memory some kind of fragmen-
tation handling must be implemented. This was achieved by having a memory file
system to add an abstraction level between the data storage and the raw memory.
While writing data to the file system requires assistance from the host PC, reading
from the file system was achieved directly by the FPGA.
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Chapter 3

Reconfiguration

Partial run-time reconfiguration in FPGAs refers to the act of replacing parts of
the logic on an FPGA without a complete reset of its operational state.

In this chapter we provide an overview of the different configuration styles that are
available. We also introduce a few tools that can be used for implementing run-
time reconfigurable systems. In the process, we discuss pros and cons regarding the
different tools and techniques.

3.1 Benefits of Partial Reconfiguration

Reconfiguring parts of the FPGA has several benefits[3]. Some of the most impor-
tant ones are listed here:

• While the partial region is being reconfigured, the rest of the device can con-
tinue to function. For example, a memory controller can be active to issue
DRAM refresh commands. Consequently, data stored in DRAM can be used
before and after a configuration process.

• It allows the usage of more logic on a chip than would have been the case
with a static implementation. Through hardware sharing, a system can be
implemented on a smaller device. Using a smaller device reduces the cost of
the FPGA and allows for smaller circuit boards. A smaller device will also
consume less power, which can be an advantage to embedded systems.

• Partial reconfiguration can be used to remotely deploy updates and bug-fixes.
A product held by the end-user could download the partial bitstream and
have its FPGA update its core logic by means of partial reconfiguration. This
might otherwise have been done by a microcontroller or a second FPGA.

3.2 Configuration Style

A partially reconfigurable system consists of a static region and one or more partial
regions. The static region remains unchanged during run-time, while logic in the
partial regions can be changed.

The smallest possible granularity of reconfiguration in the Xilinx Virtex family of
FPGAs is one resource column wide and the height of one clock region. With
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Figure 3.1: Slot and grid style reconfiguration.

this granularity the reconfigurable area (partial region) can be managed in several
different ways[6]. Single island style uses one partial region while a multi-island
style implementation has several partial regions.

A partial island may be reconfigured as a whole, or it may be split up into smaller
adjacent regions that can be reconfigured independent of each other. A vertical
division of a partial region is known as slot style reconfiguration. Splitting the slots
horizontally into modules as small one clock region in height is also possible. A
vertical and horizontally split bounding box scheme is called grid style reconfigura-
tion. Figure 3.1 shows an example partial island spanning the height of two clock
regions marked with grey and white.

The configuration style has impact on how module bounding boxes can be adjusted.
In island style reconfiguration, only one module can be executed exclusively in a
reconfigurable region regardless if there is space to host another module at the
same time in the region. However, slot and grid style reconfiguration permit to
host several modules with different resource requirements as illustrated in Figure
3.1. Due to the streaming nature of the SQL processing, slot style reconfiguration
was chosen for this thesis.

3.3 Interfacing Static and Partial Regions

For two modules to be interchangeable they must have identical input and output
signals. That is, for a module to fit into the interface between the static and partial
region these signals must use the same physical wires at the static-partial border.
There are at least three ways to accomplish this[6]:

• Bus macro approach. By placing a hard macro (routed netlist) at the border
between the static and the partial region in such a way that half of it resides
in either region, an interface can be created to the partial region. The bus
macro consists of two LUTs and wires routed between them.

Using this macro ensures that the same physical wires are used when crossing
the border, but it wastes two LUTs for every signal. It also adds additional
latency to the interface.

• Proxy logic is used by the latest version of the partial reconfiguration tool flow
from the FPGA vendor Xilinx. In this technique, anchor LUTs are placed at
desired locations in the partial region before routing the static region. The
static system is routed and the wires cross the static-partial border anywhere.
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Figure 3.2: Bus macro and proxy logic concept.

When building the modules for the partial regions, the routing in the partial
region belonging to the static build is kept. The modules inputs and outputs
go through the anchor LUTs. The router is free to route the border crossing
signals using any wires and consequently the routing becomes different with
every run.

A drawback when using this technique is that the modules may not be relo-
cated to different partial regions due to unconstrained border routing. An-
other drawback is that all modules have to be rebuilt for every build of the
static system. Also, the proxy logic consumes one LUT per border crossing
signal.

• Connection macros are hard macros like the bus macros, but they serve a
different purpose. Instead of having the border crossing wires part of a macro,
this technique forces the router to use specific wires by using blocker macros.
Blocker macros are pre-routed hard macros that are designed to force the
router to use specific wires for specific nets.

In the VHDL code for the static region, border crossing signals are bound to
connection macros that reside in the partial region. So far this is similar to
the use of proxy logic. But before the router is started a blocker macro is
placed over the partial region. This blocker macro has dummy routing that
occupy all available wires in the partial region except the wires that we want
the router to use to reach the connection macros. The concept is illustrated
in Figure 3.3 on page 24.

The connection macros work in conjunction with the blocker macro to create
a predictable border crossing interface. With this procedure, the router is left
with only one possible solution to reach the connection macros, and is thus
forced to take it.

The partial region is blocked before the static region is routed, and the blocker
is later deleted from the fully routed design. When building the partial mod-
ules the static region must be blocked, and the modules later cut from the
netlist.
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This approach has several advantages:

– The LUTs in the connection macros are meant to be overwritten when
the partial region is reconfigured, so it uses no additional LUTs for border
crossing signals.

– Modules can be relocated to any partial region that shares this interface
as long as it fits the resource footprint (see Section 4.1).

– Several modules can be configured onto the same partial region using
either slot or grid style reconfiguration.

– Modules can be built independently of the static system.

– A module can be built on a smaller device to save build time as long as
the resource footprints match.

3.4 Partial Reconfiguration Tools

For implementing run-time reconfigurable systems, tools are needed for floorplan-
ning the FPGA’s resources, and for generating the communication infrastructure.
The following list gives an overview of the tools made to assist and automate these
processes:

• PlanAhead is a graphical design analysis tool from the FPGA vendor Xilinx.
It can be used to analyze and floorplan Xilinx projects. It is also Xilinx’s tool
for integrating partial reconfiguration in their design flow. PlanAhead can be
used for implementing the static system as well as partial modules.

The latest version of PlanAhead (v14.1) uses proxy logic to constrain the rout-
ing for the interface with the partial region. Previous versions of PlanAhead
used bus macros.

Due to the proxy logic integration method, PlanAhead is only suitable to
implement island style reconfiguration. This would be too limiting considering
the SQL application of this thesis.

• GoAhead [6] originates from the ReCoBus-Builder project developed at the
University of Erlangen-Nuremberg. It is a reimplementation of the graphical
application from this project.

GoAhead supports scripting, and can in addition to the graphical interface
also be run from the command line. GoAhead supports single island style as
well as multi island style reconfiguration, and it can be used for slot as well
as grid style reconfiguration. Bus macros or connection macros can be used
for interfacing the static region.

The tool can generate VHDL templates for connection to the macros and
print constraint for the User Constraints File (UCF). It also generates hard
macro blockers that contain dummy routing. This is used to block routing
in the partial region when implementing static system as shown in Figure 3.3
on page 24. The connection macros and the blocker macro together is what
makes it different from the PlanAhead tool.

Because of the support for slot based reconfiguration style, GoAhead was used
for implementing the reconfigurable part of the FPGA.
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• OpenPR[14] is an open source tool around the Xilinx vendor tool that provides
features similar to GoAhead. However, the software does not support the
Virtex-6 FPGA family from Xilinx at the time of writing. A Virtex-6 device
was used as a target in this thesis, so OpenPR is not applicable for us.

• FPGA Editor is a graphical application that is part of the Xilinx Integrated
Synthesis Environment (ISE) tool suite. It can be used for viewing and editing
implemented designs from Xilinx projects.

Rather than implementing a complete system, FPGA Editor allows for small
netlist manipulation. From these changes differential bitstreams can be gen-
erated. For instance, it can be used to change an AND gate to an OR gate.
The tool is not suited for implementing larger changes. However, the exact
physical placement of components and routing can be analyzed with FPGA
Editor.

It can open Native Circuit Description (NCD) files produced by the mapping
and routing tools. The editor is useful for finding out if a mapped but not
routed design looks correct, before passing it to the router. If the routing
fails, viewing the NCD of the partly routed design will often reveal what the
problem was. Checking the fully routed design is always a good idea when
dealing with partial reconfiguration.

All these tools for partial reconfiguration are based on the ISE tool suite from the
FPGA vendor Xilinx. At the time of writing this thesis, Xilinx is the only vendor
supporting partial reconfiguration of large capacity FPGAs. However, the FPGA
vendor Altera announced to also support partial reconfiguration in all future FPGAs
and in their design tools[12].

3.5 Implementation Issues

The proxy logic approach allows routing from the static system to cross the partial
region. The problem with this is that modules cannot be relocated to any other
location, and that they have to be rebuilt for every minor change to the static
system.

Blocker macros may be used together with bus macros and connection macros to
block routing from the static region to cross over the partial region. This is benefi-
cial because modules can be relocated and built independent of the static system.
However, this comes at the expense of a more congested routing situation around
the partial region when building the static system. When the logic utilization in
the static region becomes higher and the size of the partial region increases, con-
gestion around the partial region becomes a paramount issue that has to be dealt
with.

The blocker macro has to block all wires where we do not want routing when building
the static region. It must also leave exactly one route for every signal that should
connect to them. If there is no route to a connection macro the router will go on
forever or for a long time. If there is more than one route to any connection macro
it will result in erroneous routing.

The blocker macro in this project is generated by GoAhead. The GoAhead tool
is continuously under development, and tweaking the algorithm that generates this
filter is out of the hands of the author of this thesis.
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Figure 3.3: The connection macro concept.
Left side: The static system is routed with a blocker macro occupying all wires in
the partial region, except the ones we want the router to use.
Right side: For the partial modules, they are routed with a blocker macro ’fence’
around the island. This results in matching interfaces for the static system and the
partial modules.

24



Chapter 4

Concepts and Design
Decisions

During the process of developing the project there were many decisions that had to
be clarified regarding its design and architecture. Each decision having its pros and
cons, and every ruling influences the possible subsequent design decisions.

Because of the complexity of the project and starting completely from scratch,
some simplifications had to be made. This includes supporting a subset of the SQL
language. The supported SQL operators include the FROM clause and the WHERE

clause as well as logical and relational operators.

Chapter Overview In this chapter an evaluation of the components needed for
a more complete system is given. We shall consider concepts and design decisions
for a possible implementation of a database accelerator.

At first we examine the floorplanning of the FPGA. To provide the reader as far
as possible with a top-down description of the system it seems most appropriate
to start with describing the layout of the system on the device. This gives us
an overview of the physical implementation of the system and hopefully eases the
understanding of the following sections in this chapter.

Since the system acts transparent to the client there is the need for a way to insert
it between the client application and the regular database as shown in Figure 1.1
on page 12. Therefore we will next discuss the de facto way of doing this, with
the use of the ODBC protocol. Then we take a look at two open source database
implementations and argue why one or the other might be used. Following is an
introduction to query plans generated by conventional databases and an explanation
for why they cannot be used.

A description of the Maxeler middleware is given next. This software is needed to
interface the software part of the database with the Maxeler hardware. Following,
a walk through the process of deriving a datapath consisting of modules from the
query. In Section 4.5 we can see that there are two different classes of modules
and we discuss the use of intermediate signals in between them. Then we look at
the module architecture options that are given by the query types we target for
acceleration. We will decide on implementation options and present an overview of
the circuitry.
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Finally, we will investigate how to store tables and how to stream them to the
modules. We will see that the storage scheme is closely related to the complexity
of the static part of the hardware. In a functional accelerator there is the need to
handle the storage of multiple tables in the memory of the MAX3 card. Therefore
we propose a hardware file system for this task in Section 4.8.2.

4.1 Floorplanning

Floorplanning in FPGA development is the process of defining where on the FPGA
different components must be placed, and which IO-pins that should be used. This
information is defined by the developer and results in user constraints to be followed
during the place and route phase by the tools.

The physical implementation of the database accelerator is divided into static and
partial regions. The static region is loaded onto the device at startup, but remains
unchanged for as long as the accelerator runs. The partial region is where the
reconfigurable datapath is implemented, the area in which the modules will be
interchanged. Floorplanning in our case involves defining where the partial regions
will be, and how they interface with the static system.

In our case, the User Constraint File (UCF) already contains information about
IO-pins and other constraints generated by the Maxeler system. This part is left
untouched. The map program can typically determine the placement without user
interaction, but in our case some additional constraints are needed. This includes
prohibit constraints for the partial region, such that no static logic is placed in
the reconfigurable part that will host the reconfigurable datapath. Furthermore,
it is necessary to constrain the routing between the static system and the partial
region.

After the mapping phase comes the place and route (PAR) phase, that contradictory
to its name does not place the components. That was done by the mapping tool.
The par program, popularly known as the router, routes the interconnect wires
between the already placed components.

While there exists prohibit constraints for the placement of FPGA primitives, there
are no equivalent constraints available for the router. This means that there are
no constraints to guide PAR to not use routing resources within the reconfigurable
region for implementing the static system.

Therefore we must use blocker macros. The blocker macro is a hard macro which
consists of a pre-routed dummy component that can be placed on various loca-
tions on the FPGA. By placing a blocker macro in the netlist of the placed device
description, but before running the PAR phase, the router is forced to ignore the
interconnect wires already occupied by the blocker.

These static wires can be deleted after the routing has finished, yielding an area
without routing that can be used as a partial reconfigurable island. In order for the
modules that are configured to this area to be able to communicate with the static
system, the input and output wires must coincide in the physical implementation.
That is, the modules and the datapath in the partial region must use the same type
of input/output wires, allowing the modules input/output to fit into the common
wire pattern. This is accomplished by selectively leaving tunnels in the blocker
macros in order to connect to connection macros.

Connection macros like the blocker macros are hard macros, but they are assigned
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to a specific LUT site, and have a specific instance name. By mapping the datapath
through these macro instantiations in the VHDL code, the router is forced to route
the signals we want to specific tiles on the FPGA. In the blocker macro only the
wires that should be used for connecting to the connection macros are left open.
This forces the router to use these wires, since there is no other option. And this
leaves a predefined, uniform routing pattern in the partial region.

A summary of the process of creating the static region is as follows:

1. Define the partial region.

2. Prohibit resource usage in the partial region.

3. Place connection macros at specific slice coordinates within the partial region.
Connect the interface to the partial region to these instances in the VHDL
code.

4. Run synthesis, translate, and run the placer (map).

5. Add wire blocking hard macros to the mapped design, covering the partial
region.

6. Route the design.

7. Delete dummy nets belonging to the blocker macro.

4.1.1 Module Footprint

The connection macros use double lines for interfacing the static and the partial
region. These double lines are horizontal wires that jump to every other switch
box which is located at every other resource column. They consequently connect to
every other CLB), BRAM or multiplier column. This means that the modules and
the macros for the static system must be placed so that they always connect to the
same wires, and all modules must be a multiple of two columns wide. If the first
possible module placement is at one column of resources on the FPGA, the next
possible placement would be two columns ahead.

On the Virtex-6 FPGA, the resource columns on either side of the FPGA follow
a specific pattern. Figure 4.1 show this pattern where L stands for a CLB column
with LUTs, B for a BRAM column, and D for a column with multipliers that are
called Digital Signal Processing tiles (DSP48) by Xilinx.

Given a module that is 4 columns wide, this pattern gives us a total of eight possible
module footprints. The first and last module placements in the figure have the
same footprint, and thus the same module implementation can be used for both
sites.

If a module shall be freely relocated to different positions, it requires eight different
physical implementations (place and route steps) for the same module. In this
example, we assume to use only the routing resources of the BRAM and DSP48
columns. As the routing architecture is identical for BRAM and DSP48 columns and
because the routing is encoded identically for there two resources, wildcarding can be
used. This allows for example to place a module with a ’BLLL’ footprint at a position
providing ’DLLL’ resources[1]. With this trick, four physical implementations would
be sufficient to support any placement position in the system.
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4.1.2 Single Island Style

The partial region will host the modules that are reconfigured for every particular
query. The interconnected modules form a horizontal datapath with the inputs on
one of the east-west sides, and the outputs on the other side. A single island style
layout of the FPGA is illustrated in Figure 4.2. Here the data stream originates
from the DRAM and is output to the host through the PCI-express interface.

partial

PCI-e

static

DRAM

Figure 4.2: A single island style layout. Example with a stream originating in
the DRAM memory, passing through the partial region, and to the host computer
through the PCI-express interface.

Figure 4.3 shows the concept of routing a stream that enters the partial region on
the west side, goes through the modules and exits the partial region on the east
side. A problem with such a design is that the output signals have to be routed
around the partial island and back again to the area around the input side of the
partial region. This is because the inputs and outputs are unsynchronized in terms
of clock cycles, but the logic is still related.
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Figure 4.3: Routing output signals around the partial island.

The static output system has to know whether a query is going on or not. This
creates two obvious problems. The output signal vector will be more than 500 bits
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wide, as we shall see later in this chapter. This means that the vertical routing on
the output side of the partial region will consume a large area.

The other obvious problem is that since the static routing is prohibited from going
through the partial region, the border around it will already be crammed with other
logic and routing. If the design would be routable at all, this would result in a long
path for the output signals, and thereby a low maximum clock frequency.

If the modules only do filtering and never alter any records, the output data signals
are not really needed. If this is the case, only a one-bit signal, the valid or not valid
record signal is needed. Then a solution could be to buffer the input signals in a
FIFO on the input side of the partial region, and only route back the valid or not
valid result from the output. However, this would destroy the concept of our stream
through database. And more importantly, it would prevent us from adding record
altering modules like arithmetic operators.

A better and more realistic solution is to add tunnels to the modules and partial
region to allow the output signals to return to the input side through the partial
region. This can be done by adding the return wires as part of the hard macro
blockers used when the modules are created. Every connection macro has the same
amount of inputs as outputs, and the double lines they use have the same amount
of eastbound wires as westbound wires.

The island on the right side of Figure 4.4 shows this kind of routing for a partial
region located on the east side of the chip. The input signals go into the first
module, then from the output of each module to the input of the next one. From
the last module the signals go through a register to ensure that the timing is valid.
From there they return through the westbound double lines that are present in
every module.
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Figure 4.4: Floorplanning streams for the west and east side partial regions. The
use of this scheme allows the use of identical modules for partial regions located on
both the west and the east side of the device.

4.1.3 Multi Island Style

When using multi island style floorplanning, the output from one partial region is
fed into the input of the next one. For partial regions located far away from each
other, multiple pipeline stages can be used to meet the timing requirements of the
design. In this way, the datapath functions as a single large partial region. But
the query planning software must be aware of the boundaries of a partial region,
because modules cannot be divided among two different partial regions. This has
to be integrated into the query planner running on the host PC.
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For a second partial region located on the west side of the chip, the same modules
can still be used. The trick is to have the data streaming through the modules always
in the same direction to avoid having to build mirror modules. In our system, this
means that the datapath always streams from left to right. So since the datapath in
the east partial region was eastbound we must ensure that is also eastbound in the
west partial region. This is done by first streaming the data through the modules
to a register on the far west side of the partial region (left side of Figure 4.4), and
then back through the modules in eastbound direction.

Deciding on which module footprint to configure on a given place in the datapath
reassembles a pattern matching task. The resource columns are denoted by L for
LUT, B for BRAM and D for DSP. In addition, we introduce another symbol X
that denotes the border between partial regions. When the query planning software
searches for a possible placement footprint for a module this icon will not fit any
footprint, because this sentinel symbol is never present in any modules footprint.
The query planning software will then jump to the next set of columns, and even-
tually the query planning software will place the module on a location past the
sentinel icon and into the next partial region.

Each of the four partial regions have the footprint ’LLBLLLLBLLDLLLLDLLBL’, as
shown in Figure 4.1 on page 28. All four partial regions are modeled by one com-
bined string. This string starts with partial region 1, then region 2 and 3, and finally
partial region 4. Between the different regions, an ’X ’ symbol will be added:

’LLBLLLLBLLDLLLLDLLBLX LLBLLLLBLLDLLLLDLLBLX -
LLBLLLLBLLDLLLLDLLBLX LLBLLLLBLLDLLLLDLLBL’

By modeling the resources this way, the finding of valid module placement positions
is a string match of the module resource string on the string resulting from the four
partial regions. Partial modules are placed one after the other, and each module will
be placed at the entire leftmost position on the remaining string. This algorithm
scales with linear execution time regarding the resource string length and linear
with respect to the number of modules.

partial 1partial 2

partial 4partial 3

PCI-e
static

DRAM

Figure 4.5: Multi island style. Example with stream going from the DRAM mem-
ory, through all partial regions, and to the host computer through the PCI-express
interface.

Using the routing scheme described above, a four island implementation could have
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the overall layout and routing shown in Figure 4.5. The wide data stream originates
from the DRAM input pins. It then enters the first module at the first partial
region that is located on the north east side of the chip. The stream then takes the
horizontal path to the partial region in the north west corner, the stream routing is
according to Figure 4.4 on page 30. After this, the stream passes through enough
pipeline stages for it to reach the southern part of the chip without timing violations.
The last two partial regions on the southern part of the chip complete the datapath.
With this routing scheme, the four partial regions can logically function as one larger
area.

4.2 Connecting the Accelerator to a Software Database

Open Database Connectivity (ODBC) is a standard software API for communica-
tion between database applications and databases. This API acts as a middleware
which allows any application to access any database as long as they are both com-
pliant with the ODBC standard, regardless of which operating systems and query
languages they use. The ODBC API was originally developed by the SQL Access
Group, but later adapted by Microsoft which named the standard ODBC. Microsoft
is the maintainer of the ODBC standard, and the latest API version is ODBC 3.8.
For this project, the ODBC API is especially interesting because it will not limit the
use of the database accelerator to a specific database. If the database accelerator
utilizes ODBC, it could in theory be used in conjunction with arbitrary applications
and databases.

All major databases ship with an ODBC driver, responsible for translating ODBC
calls into the native SQL accessing method for a particular database. Applications
do not talk to these drivers directly, but through an ODBC driver manager installed
on the operating system that is responsible for loading and forwarding queries to
the ODBC driver requested by the application. The Linux ODBC driver manager
“unixODBC”, as well as the ODBC drivers and database implementations for the
popular databases MySQL and PostgreSQL, are all open source and GNU public
licensed. This makes them ideal for this project as they can easily be studied, and
altered to suit the project if necessary.

In order to incorporate the accelerator with the database, an ODBC proxy is needed.
The main task of the proxy is to direct queries to the appropriate execution unit,
either the master database, the database accelerator, or both. In operating systems,
ODBC drivers manifest themselves as dynamically loaded shared object libraries
(DLLs). To allow data to pass through the proxy, it must be installed on the
system as an ODBC driver with its own identifier name. The application then
requests the driver using the name of the proxy.

In turn the proxy then calls the requested functions in the ODBC driver belonging
to the database and passes the function call to it. This way all ODBC calls have to
pass through the proxy, and can be intercepted and altered. Data flow is as shown in
Figure 4.6. The proxy server is implemented as any other ODBC driver, it is a DLL,
and thus functions in it are only executed when called from the application. This
means that it cannot provide services in between operations, like for instance loading
tables into the accelerator’s memory independent of queries. For this reason it might
be practical to have the proxy server talk to an always running daemon using shared
memory, and have this daemon talk to the accelerator. This complicates the design
of the proxy, but gives flexibility in manipulating the accelerator independent of
queries.
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Figure 4.6: Data flow through the proxy.

4.2.1 Executing Queries with ODBC

Using ODBC, when an application attempts to connect to a database, it has to
do so through the driver manager by stating the name of the requested driver in
a handshaking phase. The application then keeps a pointer to a memory location
where a connection handle is stored. This connection handle is then subsequently
used by the application to communicate with the ODBC database driver.

There are several ways an application can execute a query and retrieve the results,
but the basic approach consists of five calls to the ODBC driver[9].

1. SQLAllocStmt(). At this point, a statement handle is requested from the
ODBC driver. This is a pointer to a memory location containing driver specific
information about the query that is about to be executed. A query plan is an
ordered set of actions required to execute a query. More on this is explained
in Section 4.3.1.

2. SQLPrepare(). The function sends the actual SQL query along with the
previously allocated statement handle to the database. At this stage the
database compiles the query to form the query plan, ready to be executed.

3. SQLExecute(). This is the command for the database to execute the query
that was prepared in the previous step. The reason for separating the execu-
tion step from the prepare/compile step is the case of a query being executed
several times, which saves time by storing the precompiled query plans in the
database.

4. SQLFetch(). This call advances the “cursor” forward, denoting the next row
to be retrieved from the results data set generated in the previous step. The
term cursor reflects the blinking cursors found in text editors, but in this
context it means how much more data should be returned in the next step.

5. SQLGetData(). Here a single column, which has to be specified as an argument
to this call, is returned from the result set that was fetched in the previous
step. A pointer to a memory location to store the results in has to be sent as
an argument.

This is the basic approach for executing a query, but this approach only fetches a
single table entry at the time. Of course, this only becomes interesting when talking
about bulk transfers of result tables, which is why ODBC offers several methods of
reducing overhead. Here are two relevant ODBC functions necessary for increased
performance:

• SQLExecDirect(). Merges the SQLPrepare() and SQLExecute() calls into
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one that is executed immediately.

• SQLFetchScroll(). This function moves the cursor to include any number
of rows. It is used to specify any number of rows to be transferred in the
next SQLGetData(). This applies to ODBC version 3.x and later, for earlier
versions the SQLExtendedFetch(), a similar function, is used.

Another useful function is the SQLCancel() function. It can be used to terminate
an SQL statement that is being processed. This function may be used in this project
by the proxy to terminate query execution in the master database, in cases where
the accelerator finishes before the master database. Sending queries to both the
accelerator and the master database, and returning the fastest response, is a way
of ensuring that the system will never be any slower than if the accelerator was not
present.

As for performance with ODBC compared to the regular call level interface of
databases, it seems that the added overhead is not significant. One benchmark-
ing test[8] showed that the performance differences when connected to an Ora-
cle database with ODBC compared to the regular Oracle call level interface was
less than 5% in 80% of the tests, and less than 10% in the remaining 20% of the
tests.

4.2.2 Drawbacks of using ODBC

Since ODBC is a call level interface, and does not have any kind of network sup-
port, the ODBC driver and proxy must be on the client system (Figure 4.7). This
undermines what was the main reason for using it in the first place; to achieve
protocol independence. As long as client and server run on the same (Linux) sys-
tem, there are no issues. But if the client is running on another Linux or Mi-
crosoft system, this is only achievable by using an ODBC-ODBC bridge. There
seems to be only one in existence, a commercial non-free product developed by
http://www.easysoft.com/.

Also, there seems to be very few benchmarking tools that can be used to test an
arbitrary ODBC compliant database on Linux. Among the few that can be used,
DBT-3 from the Database Test Suite project[15] may be the most relevant one.
This is because it uses the TPC-H performance metric which focuses on executing
queries on large data volumes with high degree of complexity[13].

4.3 Back-end Database

When choosing which master database to use, the main criterion is that it is an
open source implementation that runs on Linux. It has to be well documented
and maintained. There are two obvious alternatives; the MySQL database and the
PostgreSQL database. Both ship with a variety of console tools and a GUI tool for
managing the database.

Both MySQL and PostgreSQL have ODBC drivers available, but the one for MySQL
seems to be maintained better and easier to set up. Considering this, and the fact
that MySQL is the most widely used of the two DBMSs, MySQL seems the natural
the choice for master database in this project.
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Figure 4.7: Typical ODBC architecture.

4.3.1 Query Plan

In order to determine the data flow to be set up in the FPGA, a data flow graph
would be of interest. Such a data flow graph could perhaps be extracted from the
query plans used in conventional DBMSs. Query plans are generated in databases
prior to execution and show the call hierarchy required to execute a specific query.
This also shows what parts of the query can be executed in parallel, and in which
order the sequential parts has to be executed. Query plans can be represented
textually or graphically. For example, using the pgAdmin III graphical SQL tool
for PostgreSQL, the following SQL query generates the query plan shown in Figure
4.8.

SELECT
o rd e r i n f o . customer id

FROM
o rd e r i n f o
INNER JOIN customer

ON customer . customer id = o rd e r i n f o . customer id
ORDER by sh ipp ing

Examining ODBC statement handles during debugging shows no indication of a
query plan being present in it. If this was the case, query plans should at least be
present in the statement handle directly after an SQLPrepare() had been executed,
and right before the SQLExecute() was called. If it is not contained in the statement
handle, this could mean two things. Either the query plan is stored internally in the
MySQL server, or it is only generated at execution time. Unfortunately, MySQL
does not build query plans[2] so that they can be reused. This is probably the reason
the graphical database tools supplied with the MySQL server cannot generate a
query plan, as the pgAdmin tool that ships with PostgreSQL can do.
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Figure 4.8: An example of a query plan, generated by PostgreSQL.

Using the PostgreSQL database server as master DBMS poses some difficulties due
to limitations in the Linux ODBC drivers available for it. The driver is community
maintained, and poorly documented. Quite some time has been spent during this
project trying to get it working, unsuccessfully. Even if it was working perfectly,
there is no guarantee that the statement handles it uses contains the query plans
used internally in the PostgreSQL server.

As it is not easily possible to extract a query plan from the master DBMS, it has
to be created internally in the proxy. To execute the query, a parser that translates
the text representation of a query into a tree of nodes is needed. In this tree, each
node is a step that is required to execute the query.

There are many ways to execute most queries. Since SQL is a declarative language
it only describes the result set, not how it should be executed. The advantage of
using FPGAs is the possibility of a high degree of parallelism, therefore such a
query optimizer should opt for having the greatest number of parallel datapaths as
possible.

The query plan is interesting for determining the steps that need to be completed
for complex queries that involve data aggregation, or that has sub queries in it.
However, for building the reconfigurable datapath the query plan from a regular
database is not of much help.

Regular query plans serve to determine the order of the operations that have to
be executed. It is useful to know that an aggregate function must be performed
before a data filtering operation from the WHERE clause, or that a sub-query must
be performed first. But this is not of any help when it comes to finding out what
kind of modules that are needed to execute the WHERE clause itself. Regular query
plans only give us the principal order of operations.

Due to the complexity of the query plan generation and the complexity of the rest
of the system, this thesis is restricted mainly to the FROM and WHERE clauses.

4.4 Maxeler Middleware

For interfacing with the FPGA, Maxeler provides a run-time environment called
the MaxelerOS. They also provide a bundle of programs to monitor and configure
the FPGA. To interface with the MAX3 card a program must use C library calls
from the MaxCompilerRT API. There are two ways to pass information to a custom
HDL node on the FPGA; streams and scalar inputs. Both have customizable bus
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widths. The streams have flow control and can be used to transfer data, while the
scalar inputs can be used to pass a single operand to a custom hardware module
(called HDL node by Maxeler).

In this project, streams are used to stream data to the HDL node or to the DRAM.
A stream is also used by the HDL node to tell the host application that a query
has finished and how many records were returned. That is because there is no such
thing as a scalar output. Scalar inputs are used to control the HDL node from the
host computer. This includes things like resetting, setting the DRAM address, and
initiating executions.

There are some relevant MaxCompilerRT functions that are used in this project:

• max set scalar(). Input a C variable to a register in the kernel or custom
HDL node.

• max queue pcie stream(). Transfers a statically or dynamically allocated
buffer over the specified stream.

• max sync pcie stream(). Blocks until a stream has completed.

• max setup pcie stream ringbuffer(). Sets up a ring buffer with read and
write markers. In this project it is used to retrieve the results from a query
in real time. The reason for using this instead of regular streams, is because
the amount of data to receive is not known in advance. Therefore we use
ring buffers and a second flow control stream in parallel with the data output
stream to tell the host computer that a query has completed.

• max reset device(). Resets the device. The HDL node uses a different reset
by scalar input.

• max run(). A wrapper function that resets, transfers the data and syncs the
stream(s). This is used in this project to load tables to the DRAM from the
host computer.

4.5 Datapath Generation

The matter of deriving circuits from queries has previously been explored by others,
relevant research includes the Glacier compiler[7]. This PhD thesis focuses on the
use of FPGAs to accelerate queries on real-time streams of stock market data. In
this thesis, a query to hardware compiler called the Glacier compiler is presented.
This compiler takes a special algebraic representation of a query plan and compiles
it into a VHDL hardware description, which in turn is synthesized into a bit level
representation (configuration bitstream) that is loaded onto the FPGA.

This approach cannot be directly adopted for use in this project, because for every
new query a complete design flow has to be run, which takes far too much time.
Even so, the [7] thesis contains some interesting hardware solutions for common
database operations. It also offers a discussion of possible ways to get around the
compile time problem. It proposes using fixed processing elements (modules) in
the FPGA and rearranging the data flow for every query. Alternatively by using
programmable modules in a fixed overlay data flow network, which is particularly
interesting.

Implementing a fully featured accelerated database cannot be accomplished in a
single master thesis project. However, by accelerating the WHERE clause one can
actually gain a lot of performance in a database system. This is because it in many
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cases substantially reduces the table data that has to be further processed by the
database system. For example, the SELECT clause defines which columns to output,
and the WHERE clause is used to filter the rows for the result set.

The first thing we want to support in our accelerator is data filtering. The clause
that implements filtering in SQL is the WHERE clause. The HAVING clause does
filtering too, but not exclusively. The data aggregation which is allowed in the
HAVING clause makes it more complicated to implement than the WHERE clause.
Therefore we first turn our attention to the WHERE clause part of the query.

Next we must figure out a way to convert the WHERE clause to sequentially placed
modules. This part of the query can be represented by a Boolean decision tree
where the operands are fields in the input table(s). Consider a query on a table
"numbers" consisting only of integer values, for simplicity.

"SELECT * FROM numbers WHERE intA = 0 AND intB > 0

AND (intC < 0 OR intD = 1) OR intE < 1 OR intF > 1"

In this example there are two types of logic operators. There are the relational
operators "<", ">" and "=", and there are the logical operators AND and OR. This
implies that there must be two different classes of modules. Firstly, there are the
ones that implement the relational operators. These compare a register value to
the specified field from the streaming data bus, and the output of previous module
stages does not have an effect on the output from these modules. Secondly, there
are the modules that implement the logical operators.

Figure 4.9 shows a Boolean decision tree corresponding to the previously stated
query. Note that the relational operators and operands have been replaced, (intA
= 0) by a, (intB > 0) by b and so on. This has been done because the outputs
of the modules solving the relational operations are producing the inputs to the
modules solving the logical operations. The tree height and structure is determined
by the composition of the logical operators, not by the relational ones.

+³

&² +²

&¹ +¹

a b c d

e f

relational

operator nodes

output

logical operator 

nodes

Figure 4.9: Decision tree. Leaf nodes are relational operator nodes and branch nodes
are logical operators.

Once the decision tree has been derived from the WHERE clause, determining the
module placement is simply a matter of traversing the tree from left to right, or
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vice versa. The pseudo code in Algorithm 4.1 describes a recursive implementation
of this. The curved line in Figure 4.10 shows a graphic representation of tree
traversal, and the stars on it denotes placement of modules. This results in a
module placement according to Figure 4.11.

Algorithm 4.1 Algorithm for deriving module placement from expression tree.

PLACE MODULES RECURSIVE( top level root node )
function PLACE MODULES RECURSIVE(node tree)

node←node tree
if node is relational operator then

add this node as the next module in the datapath;
else ▷ node must be logical operator

PLACE MODULES RECURSIVE( this node’s left branch)
PLACE MODULES RECURSIVE( this node’s right branch)
add this node as the next module in the datapath

end if
end function
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Figure 4.10: Parsing the decision tree. The stars mark the points where a new
module is added to the datapath.

The final placement on the FPGA may vary due to resource constraints. However,
Figure 4.11 shows the partial order in which modules have to be physically placed
to evaluate the WHERE clause example.

The figure also shows how every relational operator module adds its result to the top
of the results bus, and shifts down all the results from previous modules by one place.
When a logical operator module is encountered, the two top results on the results
bus are consumed, and replaced by the result from the logical operation.

The height of this tree is directly proportional to the number of intermediate results
that has to be propagated along with the data signals. The observant reader might
have already figured out that this is not always true, and it is not. In fact, a
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Figure 4.11: Module placement derived from Figure 4.9 and 4.10. Including inter-
mediate signals’ placement on the result bus between modules.

tree of any height can be implemented as a path of modules using only one single
intermediate signal. This is true as long as the tree is, or can be rewritten as
tree consisting of only AND operators. But for a balanced tree containing only OR

operators, the tree height corresponds to the number of needed intermediate signals.
The datapath must be functional for all types of trees, so we assume that the tree
height is always proportional to the number of intermediate signals.

Reducing the tree height can in some cases be accomplished by applying Boolean
algebra to the expression, but this is out of the scope of this project. And as we
shall see in the next section, the implementation of the modules can be used to
reduce the number of intermediate signals.

The discussion on the needed intermediate signals resembles the problem of evaluat-
ing Boolean expressions with a minimal number of temporary variables. A problem
that has not been though of since the early days of computing when memory was
scarce re-emerges in our project.

To allow modules and datapaths of arbitrary size in terms of latency, the input to
and output from a module must be decoupled in the time domain. Consequently,
the input and output from the datapath must also be decoupled in the time domain.
All modules are synchronized by the same clock source, but they should by able to
have an arbitrary amount of clock cycles latency.

The only performance metric that is of any concern is throughput. High volume
database operations are throughput driven, and latency in terms of clock cycles is
not an issue. Therefore we postulate that the modules and the entire datapath can
consume as many clock cycles as needed, but it has to consume and process a new
data item every clock cycle.

In this context a data item means a portion of the input table(s) corresponding to
the size of the input data bus. This can be referred to as a chunk. Further we define
a smallest granularity for the data items that can be handled by the accelerator.
For a regular database this could be one bit (a Boolean signal), one byte, or more.
Dealing with such small atomic units in the modules is undesirable because it will
result in complex multiplexers. Instead we dictate that the smallest atomic data
item will be 32 bits, and smaller units must be padded to this size. We will refer to
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this as a word. An integer will be the size of one word, and strings must be padded
to fit into a multiple of words.

The modules are required to be able to consume a chunk every clock cycle, but
what if there is none available, or if the system is idling? For this purpose an IDLE

state flag is introduced. If there is no input data or if the system is idling, the
IDLE state is propagated with every invalid data chunk, and between the modules.
When a module sees this flag, it idles all internal processing steps for one clock cycle
and propagates the flag to the next module along the datapath. This is effectively
forward flow control.

For allowing the modules to keep track of what portion of each record a chunk
belongs to, some kind of synchronization is needed. This could be achieved by either
propagating some kind of flag with the data chunks that marks the beginning of
a record, or it could be a number value that labels each chunk. If the flag option
is chosen only one bit signal is needed, but then counters within each module are
needed to keep track of the input chunks.

A far better solution is to incorporate the labeling of chunks with the other state
flags. There is the previously mentioned IDLE state flag, but as described in the
next section, there is a need for several further state signals. A bus containing pre-
defined states where some are chunk labels, and others are special state signals are
propagated along with the data chunks. This makes the HDL code more manageable
and easier to debug.

4.6 Module Concept

Modules implementing SQL operators are the building blocks of the datapath. For
example, the operators used in the WHERE clause can be turned into modules to exe-
cute this part of the query. The library of modules determines what data streaming
operations the accelerator can and cannot perform.

In the WHERE clause part of a query there are a number of different operators that
can occur. There are the logical and relational operators, but there are also others
like arithmetic and unary operators. Implementing all of these operators as modules
would be too complicated to be carried out in this thesis, and it is not necessary
to merely demonstrate the concept of database acceleration using a reconfigurable
datapath. Moreover, implementing all variations of these operators would result in
an unlikely large module library.

There are also many different data types that can be used in a database. Two of
the most common data types are integer numbers and text strings. To reduce the
complexity of the software parser and to ease the storage of tables in the accelera-
tor DRAM memory, we limit the number of supported data types to integers and
strings.

In a database there is also the possibility to have a NULL value at any record.
Implementing this in hardware would require some kind of flag to be stored in the
tables, indicating that a particular record does not contain any value. This would
further complicate the data storage, parser, and the modules, so we simple say that
the accelerator handles only strings and integers.

Note that according to the IEEE standards for floating point representations, a
module for comparing floating point modules would be similar to an integer compare
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module. It would only have to be changed to handle the special cases of NaN (not
a number) and positive and negative zero.

When dealing with strings in databases, regular expression is a powerful tool. Reg-
ular expressions allow the user to match patterns using wildcards. A wildcard
may match a single character or an arbitrary number of characters. A regular
expression can be represented by a Deterministic Finite Automaton (DFA) or a
Non-deterministic Finite Automaton (NFA)[11]. A DFA graph could be unrolled to
modules in the non-blocking datapath like the rest of the WHERE clause. This would
require a more sophisticated query parser and specialized modules, so regular ex-
pressions are omitted in this thesis.

To be able to demonstrate the most common data filtering queries we focus our
attention on implementing three different modules. Firstly, the integer compare
module, for comparing two 32-bit integers with one of the compare operators. Sec-
ondly, the simple pattern match module, for string pattern matching within one
chunk. And thirdly, the long string pattern match module which can do pattern
matching over multiple chunks.

One key concept of this architecture is that the input and output are unsynchronized
in terms of clock cycles. But there has to be some way to tell the host computer
that the query has completed, so we introduce the DONE state. This has the same
meaning as the IDLE state to the modules, but it tells the output logic on the
static system that the query has completed. The number of records returned by the
query is then written to the host computer through the control interface. At last
we include a RESET state as the fifth and last of the special states. This tells the
modules, as the name suggests, to reset its registers to the original state.

4.6.1 Module Initialization

Once the modules have been placed to form the datapath, their internal registers
must be set. The pattern matching modules must be set with a match string, and
the integer compare module must be set with a compare value. The modules must
also know where the data fields are in the stream. This means at which chunk,
and where inside a chunk, the word is located. This must also be written to their
internal registers after they have been placed on the FPGA.

To avoid confusion between the action of reconfiguring the FPGA and configuring
the modules internal register once they have been placed on the FPGA, we shall
from now on refer to the latter as initializing the modules.

The module initialization is required not only for one, but for several reconfigurable
modules that are stitched together in a one dimensional chain as shown in Figure
4.11 on page 40. Consequently, we need a way to write selectively to registers in
modules that can be placed at different positions.

To allow the modules to be initialized we introduce two new states, INIT and
INIT PHASE2. We also introduce a new mode of operation on the data bus, the
init mode. The trick is to design the modules so that if they see the INIT state on
the state bus, the first byte on the data bus is decremented by one before it is passed
on to the next module. The state bus is as always left unchanged. When a module
sees that this decrement byte evaluates to zero, it knows that the initialization data
is meant for this particular module. This counter based addressing scheme uses the
strict sequential placement order of the reconfigurable modules.

The pattern matching modules can be used to match a string spanning the whole
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of a chunk, including the decrement byte. To simplify initialization, a second init
state is used, the INIT PHASE2 state. When a pattern match module sees this
state, it knows that the next item on the data bus flagged with INIT PHASE2 is
the match string, which is then written to the appropriate register.

4.6.2 Data Bus

The maximum DRAM memory transfer speed on the MAX3 card is reported to be
38.4GB/sec. The data bus coming from the DRAM can be a multiple of two. The
Maxeler compiler will take care of the conversion to the correct bus width. When
deciding on a data bus width the maximum memory speed divided by the frequency
the modules will be running at defines the upper bound. If we run the modules at
300MHz the calculation shows that 38.4GB ∗ 8/300MHz = 1024bits.

Unfortunately such wide buses make the reconfigurable area too large. This causes
difficult routing situations because of the internal vertical routing in a module, and
because the partial island is simply too large to route around. So we choose the
half size, 512 bits. This is equal to 512/8 ∗ 300MHz = 19.2GB/sec if we manage
to get the modules running at 300MHz. Remember, the smallest atomic data item
that is allowed in the data stream is a 32-bit value called a word. This means that
one chunk will now contain 16 words.

As mentioned before, the modules have to be designed to support a pipeline fill rate
of one new data chunk per clock cycle. This implies a computation throughput of
19.2 GB/sec. Reading the DDR memory introduces overhead for DRAM refresh
and file system access. Furthermore, sometimes we have to read unnecessary data
that will be discarded by the SELECT clause. Consequently, the 38.4 GB/sec - to
- 19.2 GB/sec data rate ratio is a good match to highly utilize both the memory
interface and the reconfigurable datapath.

4.6.3 State Signal Bus

In the previous section the decision was made to merge the synchronization of
chunks and the state flags into one state signal bus. This raises the question of how
wide this signal bus should be.

There are several things to consider when determining this answer. The number
of state signals determines the number of addressable chunks, and thereby sets the
maximum size a record (row) in a table can be. State signals are overhead as they
consume logic resources that could otherwise be used for the datapath. They must
be routed on the FPGA along with the data bus. Also, using a lot of state signals
will result in more complex comparators in the modules, since they are used as
inputs to modules’ multiplexers and state machines.

Another consequence of having more addressable chunks, is that the long string
pattern match modules would have to store more match strings. Either that or the
situation would be that the maximum record size would be more than the maximum
string size, which would be undesirable.

When deciding on such global constants, it is also a good idea to take a look at the
FPGA architecture. The Virtex-6 chip is the target device, and according to its
datasheet the Look Up Tables (LUTs) can be configured in two different ways. As
a single 6-bit LUT, or as two 5-bit LUTs that have separate outputs but common
logic inputs. Therefore, choosing a bus width of seven versus six may have some
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impact on the logic costs. If we choose a five-bit state signal bus the total number
of addressable chunks would be 55−5 = 27. Five states are consumed by the IDLE,
INIT, INIT PHASE2, DONE and RESET states. This gives us the maximum record
size of 27 ∗ 64B = 1728 bytes, which is enough for the tests we have in mind.

With this design decision, a single 6-input LUT can evaluate two different states at
the same time, and a single record can be more than one and a half kB long.

4.6.4 Results Signal Bus

In Section 4.5, we learned that the number of intermediate result wires needed is
proportional to the tree height of the decision trees we are expecting. We also
distinguished between relational operator nodes and logical operator nodes. When
designing the modules it appears that the modules dedicated to a logical opera-
tor would be much simpler than the ones dedicated to relational operators. In
fact any logical gate with two inputs will only take up one LUT. The rest of the
logic cost comes from routing and pipelining the input signals to the output of the
module.

Therefore, it will be a better solution to incorporate the logical modules into the
relational ones. This reduces the amount of modules in the library, and also reduces
the need for intermediate wires between them. The operator types have to be given
to the module during the initialization. A decision is made to use eight intermediate
wires, and allow for eight successive logical modules to be absorbed by one preceding
relational node. That should be enough to cover any query we are expecting to test
without being too wasteful.

The result from a module is only valid on the output of the last data chunk. It has
to be this way because we are only interested in the result at the moment the full
record has been processed. Modules interact on the results of the previous result,
so using the last chunk of every record for synchronizing this seems like a good
choice.

4.7 Module Architecture

We have now defined the input and output buses for the modules. The modules’
black box view is shown in Figure 4.12. A simplified overview of the architecture
common to all WHERE clause module types is shown in Figure 4.13.
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Figure 4.12: Module black box view.

On the input side of the modules, all the signals first go into register flip-flops. This
is done to ensure that the timing will be met for the partial region combined with
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Figure 4.13: Module architectural overview common to all WHERE clause modules.
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the static system. The router tool will only provide a route with a valid timing score
to and from what we define as inputs and outputs for the partial region. Since the
modules will be reconfigured dynamically, one must design them in such a way that
no path will be longer than the maximum allowable delay once they are stitched
together. Therefore, we put flip-flops on the inputs, and also have the signals from
the last module going directly into flip-flops in the static system.

On the top half of Figure 4.13 we see the basic functionality of the initialization
logic. If the state signal is the INIT state, the first byte is decremented by one.
If the decrement byte at the same time evaluates to zero, internal registers are set
with values from the data bus. The initialization logic is more complex than this
because of the two stage initialization introduced earlier, but the figure shows the
basic concept.

The data bus input also goes to the relational compare logic, which of course differs
from one module type to another. The result is then delayed until the last chunk
is put on the output bus. An integer compare module might have its target field in
the first chunk of a record, but as mentioned previously the result from any module
is only valid when the last chunk is output from it. Therefore, the result has to be
delayed until the last chunk is ready to be output, if the compare field is not at the
last chunk already.

Following the result delay logic is a downshift of all the results from previous mod-
ules, while the new result from this modules relational compare operation is added
to the top of this bus. That is, if there was one result on the result bus from a
previous module, it would be at index <0> on the result bus as it enters the cur-
rent module. This result would then be shifted down to index <1> while the new
result replaces its value at index <0>. This is exactly what was illustrated under
the nodes a, b, c, d, e and f in Figure 4.11 on page 40.

After the downshift comes the evaluation of the eight logical operators. There
are eight of these because the decision was made that every relational operator
node should be able to absorb up to eight succeeding logical nodes, and thereby
eliminate the need for dedicated logical operator modules. Note that the figures are
only conceptual and assumes that the module consumes only one clock cycle, this
is not the case in the implementation.

The logic path from the input data bus to the output result as shown in Figure 4.13
is very long, and would result in a long logic path, thus limiting the maximum clock
frequency of the module. In the implementation of the modules, pipeline stages are
added to divide the logic paths into smaller, faster paths. This is allowed because
the requirement of a module is that it accepts a new data item every clock cycle,
and outputs one. The database accelerator is throughput driven, latency is not a
concern.

4.7.1 Logical Compare Unit

This part of the modules implements the logical node absorption. Every module
contains eight consecutive logical compare units. That allows them to absorb up
to eight following logical compare nodes from a decision tree, like the one shown
in Figure 4.9 on page 38. For simplicity it only implements the most important
operators, including AND, a NAND, an OR and a NOR gate. The logical operator is
specified by a register that is written during the module initialization phase (see
Section 4.6.1).
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unit if there is no operator (No-Op).

The path from the input to the output of the WHERE clause modules is depicted
in Figure 4.13 on page 45. The figure shows that the logic path from input to
output goes through eight logical compare units. That is a very long logic path to
be evaluated in one clock cycle. It is clear that all WHERE clause modules must be
pipelined in the final implementation to obtain an adequate maximum frequency
rating.

4.7.2 Integer Compare Module

For the integer compare modules, the compare logic that fits into the ”relational
compare logic” box in Figure 4.13 (page 45) is shown in Figure 4.15. There are four
register values that must be set during the initialization phase. There is the compare
value register which holds the integer value to be compared with the values from
the target column specified in the query. The word position register tells the
module at what word the column of interest is found, and the compare operator

register selects the correct relational operator with the help of a multiplexer. This
logic path is active at all times, but the output is only valid when the specific chunk
passes through the module. This must be controlled by initializing the match chunk

number register with the correct chunk number.

All in all, the integer compare logic is fairly simple. It consists of dedicated circuits
for all supported relational operators. Which one to use is selected by a multiplexer
that reads the compare operator initialization register. Implementing the software
that generates the initialization data for this module was in fact much trickier than
implementing the module itself in VHDL.

Initializing the integer compare module is done in one INIT PHASE1, and takes one
clock cycle.
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Figure 4.15: Integer compare logic.

4.7.3 Simple Pattern Match Module

This module is designed to match strings that span over no more than one chunk.
The query planner software will evaluate the alignment of a text field in the data
stream, and decide if it fits into one or more chunks. If it fits completely in one
chunk, the Simple Pattern Match Module is used, otherwise the Long String Pat-
tern Match Module will be used. The Simple Pattern Match Module can therefore
compare strings that are 16 ∗ 4 = 64 characters long.

The reason for having two pattern matching modules is that the one that can span
over multiple chunks is more complex, and consumes a larger area on the chip than
the simple one. It might have been a good idea to have a pattern match module
that can span over only two chunks, because a text string could be short but still
span over two chunks. The case could be that it is 8 bytes long (two words), but
that the first word is at the end of one chunk and the last is at the beginning of the
next chunk.

The pattern matching function is implemented with 16 32-bit comparators as shown
in Figure 4.16. They compare words from the stream with register values that have
to be written to it during the initialization phase. The active words can be specified
by setting the active words bit mask register in the initialization phase. This bit
mask selectively activates the comparators so that they match the fields’ alignment
inside the chunk. The result is valid only when the chunk entering the module is
equal to the value of the match chunk number register. Again, this must be set at
initialization time.

As was the case with the Integer Compare Module, all pattern matching circuits
are present at all times. The output is governed by the previously mentioned bit
mask register. The bit mask approach moves much of the complexity of selecting
input words from hardware to software. The philosophy is that implementing a
more autonomous hardware module is more costly in terms of resource usage and
development time than implementing a complicated software application.

Initializing the Simple Pattern Match Module always takes two clock cycles. One
chunk tagged with the INIT PHASE1 state must first target the module. It sets the
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Figure 4.16: Simple Pattern Match Module.

internal registers and instructs the module to wait for the INIT PHASE2 state. When
it arrives, the match string register is set and the module is operational.

4.7.4 Long String Pattern Match Module

The pattern matching module for long text strings is basically the same as the one
for smaller strings. The difference is that it can store a match string that spans over
several chunks. Therefore it has to propagate the intermediate result from the first
match chunk to the last match chunk. This has to be configured in the initialization
phase, as well.

Both pattern matching modules store the match strings in registers (LUTs). This
has been done to ease the implementation, but it would be more efficient to store
them by using the Block RAM (BRAM) that is available on the chip. With this
implementation the BRAM in the partial region is unused and wasted. Also, BRAM
can store more data than LUTs in a smaller area. But by looking at the implemented
design it seems that the bottleneck for making compact modules is not the LUT
usage, but the vertical routing resources. In our case with the 512-bit wide data bus,
it is the vertical routing that limits how narrow a module can be on the chip.

Since the decision was made to limit the record (row) size to 27 chunks, there is no
gain in using BRAM versus LUTs. The vertical routing problem is a good example
of a new limiting factor that is specific to slot based partial reconfiguration using
very wide buses.

Initializing the Long String Pattern Match Module must be done over several clock
cycles. Every chunk that should be matched and its corresponding bit mask is first
specified by a state flagged INIT PHASE1 followed by an INIT PHASE2 state that
contains the actual match string for the particular chunk. Initializing this module
to its full capacity of 27 chunks would take 54 clock cycles.
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4.8 Data Storage and Movement

Input and output from the FPGA is handled by the Maxeler system. The Maxeler
system can provide streams with either a push or pull interface. The multiplex-
ing and flow control is also handled by the Maxeler system. We use these auto
generated stream interfaces to transfer data to and from our custom VHDL imple-
mentation.

The FPGA is mounted on a PCI-express board connected to the host computers
motherboard. Interfacing with the host computer is achieved by using the FPGAs
PCI-express interface at a maximum data rate of 2GB/s. Maxeler provides a DMA
controller for the PCI-express interface that supports up to 15 independent input
or output streams. However, all streams to and from the host computer share this
bandwidth. The multiplexing is done by the Maxeler system and is transparent to
our implementation.

Figure 4.17 shows an overview of the streams included in the design. There are
two 512-bit input streams and one 512-bit output stream. One stream goes to the
memory, allowing us to store tables in the memory or alternatively stream them to
the modules when needed. Another 512-bit stream goes directly to the modules,
and is useful for debugging.

PCI-e
Host computer ICAP

partial area

pipeline

fl ow

control

DRAM

MAX3 card

FPGA

Figure 4.17: An overview of the data streams in the system.

The PCI-express input from the host computer only has a bandwidth of roughly
one tenth of the modules, so the tables must be streamed from the memory to
achieve the full throughput. The output from the partial region goes back to the
host computer. In a more advanced database accelerator there would also be a
stream back to the memory. This would be necessary for storing temporary results,
and for executing SQL join operations.

Along with the output data stream, there is a 32-bit wide flow control stream. This
stream is needed to tell the host computer that the query has completed, and to
give it the number of returned records. This stream is only active for a few cycles
after each query has completed, so it does not consume bandwidth from the output
stream.
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The last 32-bit stream goes to the FPGA’s internal configuration access port (ICAP).
This stream is used for reconfiguring the partial region. Config data is streamed
directly from the host to the ICAP port, triggering the partial reconfiguration of
the device.

4.8.1 Record Management

There are several methods used by databases to store tables in the memory[10].
There is the straightforward implementation where each record spans over one fixed
size memory block. The type, length and offset are stored in the table header. This
storage scheme wastes space, because each record of the same column must have the
same size. For example, most text strings in a database are only a few bytes long,
but if one slot contains a 100 bytes long string, all text strings will now consume
100 bytes.

An alternative to fixed sized memory blocks is the variable field length storage
scheme. In this scheme, each slot has a length descriptor field. This produces some
overhead data, but will in most cases reduce the required storage space. If this
storage scheme is used for database streaming, the static system must contain logic
to align the slots so that they appear at the correct word positions when streamed
to the modules.

The decisions on how to store tables in the memory and the complexity of the
streaming part of the static system are closely related. A simplified data storage
scheme wastes space, but makes the streaming of the tables straightforward. A more
complicated data storage scheme calls for a complex streaming logic to extract the
data fields and insert padding where necessary.

A more advanced implementation could store the tables compressed in the memory.
This would require compression and decompression logic, but there is also a po-
tential speed gain from this. A decompression scheme could supply the accelerator
with data at a faster rate than the DRAM speed[4].

A file system like the one described in the next section would be desirable for ab-
stracting the storage of tables away from the user. However, due to implementation
difficulties described in Section 5.2.2 the file system had to be abandoned.

Since the file system design process turned out to be unreasonably time consuming,
dumbing down the record management suddenly seems like a good idea. The tables
will be stored in the memory padded to the nearest chunk size. In this way no
special alignment and flow control logic is needed. The tables can be streamed
directly from the memory to the modules, and the flow control will be handled by
the Maxeler system.

Figure 4.18 shows an example of how a record with three different sized fields would
be stored in memory and streamed over the data bus. The records with padding
are stored in the memory, one record following directly after the other. When they
are streamed through the modules they already have the correct alignedness. The
task of aligning and padding the records is performed by the query parser, and the
tables are loaded to the memory using a dedicated PCI-express stream.

4.8.2 File System

A file system is needed to allow storage of large data items in the DRAM memory.
To allow tables to be stored and deleted from the memory during run-time, some
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kind of data management scheme that allows fragmentation is needed, and for this
we propose a file system.

The Linux ext2 file system is a non-journaling file system with a relatively simple
concept. Ext2 splits up the disk into blocks, a file can span over multiple blocks.
The file size and pointers to the blocks that make up the file are stored in a record
called an inode. The inode can also contain a pointer to another pointer structure
in case the file is bigger than the maximum number of blocks the inode itself can
point to. This second level pointer structure can in turn have a pointer to another
pointer structure, and so on. This allows the file to grow and still be fragmented
into block sized partitions.

The ext2 file system is more complicated than this, but the outline is very simple.
Divide the disk into fixed sized blocks and manage these with pointer structures.
Because of its simple pointer structure and the capability to access large files, con-
cepts from the ext2 file system have been selected for an FPGA implementation of
the file system.

Instead of having dedicated inode structures, we split the memory into fixed sized
blocks that can either be used to store data, or to store pointer structures. The
pointer structures contain pointers to data blocks, ordered sequentially. The last
pointer in a pointer block is used to point to the next pointer block. This last
pointer can be either null (zero in this case), indicating that there is no next pointer
structure, or it can be a pointer to the next pointer block that contain pointers to
the file’s data blocks.

This pointer and data block scheme is illustrated in Figure 4.19. A file’s identifier is
the pointer address to the first pointer block. This integer number must be mapped
to a human readable file name by the software on the host computer. When a file
is to be stored in the memory the hardware file system is first given the number of
bytes to be stored. Then the file is simply streamed to the hardware file system.
At last, a pointer to its first pointer block is returned to the source.
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Figure 4.19: Pointer and data block scheme.

When the user wishes to stream a table from the memory to the accelerator, the
query planner software must retrieve the pointer associated with the file name (table
name). The stream to the accelerator is then set up, and this pointer along with
the file size is given to the hardware file system. The transfer of the first pointer
initiates the data stream from the memory file system to the accelerator.

The Pointer FIFO The file system must have a way to keep track of which blocks
that are used and which that are free. When creating a new file, the file system
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must get access to free data blocks. To allow this, a FIFO containing pointers to all
the uninitialized blocks is implemented. The memory is split up into blocks, except
for the initial part which contains a FIFO of uninitialized pointers (Figure 4.20).
Whenever a new block is needed in the process of storing a new file, a pointer to
an unused block is pulled from this FIFO.

free blocks

FIFO

********** ≈ *

≈

pointers to free 

data blocks
pointer to next 

pointer block

********** ≈ *

pointers to 

data blocks

memory

Figure 4.20: Partitioning of the file system. The initial space consists of the FIFO
for unused pointers, this FIFO stores pointers to all free blocks. The rest is divided
into equally sized blocks, and is used for storing pointer and data blocks.

This scheme of keeping track of free space by using an unused pointer FIFO differs
from the ext2 file system which uses a data allocation bitmap for this. One rea-
son for choosing this pointer FIFO is that is simplifies the implementation when
targeting hardware. Another reason is that the maximum number of files to store
is significantly lower that what is needed on a computer file system. This allows
the block sizes to be larger, and this reduces the number of unused pointers that
has to be stored. This means that the space used for this meta data structure
has less impact than it would have had if the ext2 file system used such a pointer
FIFO.

The third and maybe most important reason to use this FIFO is that the point-
ers can easily be sorted. When a file is deleted the blocks used for it has to be
freed. These freed blocks are then pushed onto the FIFO. As the allocation and
deallocation of blocks progresses, the memory becomes more fragmented. A simple
countermeasure for this would be to sort the unused pointers from time to time.
Sorting numbers in FPGAs has been explored by others, and it could even be accom-
plished by using partial reconfiguration[5]. By using the already present datapath
and reconfigurable regions, the extra logic consumed by the sorting hardware would
not be significant.

Translating a pointer into the absolute byte address is achieved by multiplying the
pointer value by the burst size and adding a fixed offset to it. The offset is for skip-
ping the first part of the memory where the unused pointer FIFO is stored, and the
multiplication picks out a unique block. To make the implementation more straight-
forward, the pointer data type must be a power of two bits wide. Furthermore, they
must be large enough to address any block in the memory uniquely.

Considering a file system supporting the 24GB of the MAX3 card, the minimum
block size would be 24 ∗ 230B /216 = 393.219kB. Such large block sizes would fit a
file system with only a few large files. Therefore, to be more general, 32-bit pointers
are used in this project.

54



CHAPTER 4. CONCEPTS AND DESIGN DECISIONS

A major design decision regarding the file system is choosing block sizes. It is very
difficult to develop complex generic VHDL implementations, that is, a file system
implementation that can be built for a variable block size. Therefore, the block
sizes will have to be hard coded in the VHDL implementation.

When designing a file system it is necessary to consider the properties of the under-
lying hardware. The MAX3 card we are using has a minimum memory burst size
of 384 bytes. The smallest data size that can be read is 384 bytes, and the memory
is only addressable in 384-byte units. The block size should therefore be a multiple
of 384 bytes.

The ideal block size depends on the maximum number of files that will be stored.
Getting this wrong will result in space being wasted in form of meta data structures.
Having a larger number of files means that their average size will be less, and this
calls for a smaller block size to minimize internal fragmentation.

With the implementation described above, the space in bytes required for the unused
pointer FIFO will be the total number of blocks times four. This is because 32 bits
equals four bytes, and because at most, all the data blocks are unused. The amount
of used data block pointers consumes the same size, because at most all the data
blocks are used. With random file sizes the average wasted space is approximately
the size of one block. On average, almost half a pointer block will be unused per
file due to internal fragmentation. The same applies to data blocks, every file will
on average leave close to half a data block unused.

Figure 4.21: Overhead and wasted space as a function of block sizes. The Matlab
code for this graph can be viewed on page 90.

These calculations have been plotted into Figure 4.21 to show the overhead and
wasted space as a function of block sizes. The graph reveals that even with a file
system supporting 20,000 files the overhead and wasted space accounts for only 0.5%
of the total memory size. This is sufficient for the type of database the accelerator
is meant for. For the final implementation we choose the block size of 3072 bytes
(3kB). This is eight times the burst size of the memory controller. Eight is a power
of two and this will ease the implementation of the file system.

55



Chapter 5

Implementation

In this chapter we will examine the system the way it was actually implemented.
We will go through the implementation of the entire system and describe the most
important features. The focus will be on the parts which give us the best under-
standing of the overall structure and functionality. We will briefly describe the
steps taken to build the complete system, and notable difficulties and pitfalls will
be emphasized.

We will start by describing how the software part was implemented. Then we will
look at the hardware implementation of the static system. Finally, an implementa-
tion of each of the three partial modules will be presented.

5.1 Software

The main software application developed in this project is the Query Planner. It
is responsible for parsing the queries and turning them into hardware datapaths.
This is the front end that a user of the database accelerator sees and interacts
with.

In Section 4.2 we discussed the use of ODBC to connect the accelerator to a regu-
lar software database. This connection implements only the baseline functionality
required to prove the operation of the query accelerator. For a full scale implemen-
tation of an ODBC proxy a great deal of work would have to be put into making
it compliant with the SQL language and the ODBC call level interface. Such an
ODBC-proxy application would have been on top of the query planner in the actual
software stack shown in Figure 5.1.

To interface with the MAX3 card and the FPGA an interface application is needed.
The FPGA is monitored and controlled by the MaxelerOS, but is accessible to
programs through the MaxCompilerRT API. For controlling the streams to and from
the FPGA and to and from the memory, an interface application was developed.
This program provides an abstraction level between the query planner and the
Maxeler system.
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Figure 5.1: Software stack overview.

5.1.1 Query Planner

For processing the queries, a software application was written from scratch, entirely
in the C programming language. The decision was made to write the software in C
because this seemed more suitable for the existing software. Both the ODBC library
and the MaxelerRT library are implemented in C. Writing such an application
would preferably be done in a high level object oriented language, but a realistic
implementation would require the speed of C or C++ to be functional. The query
planner consists of more than 2400 lines of code.

The software is named Query Planner although it does not really generate any
query plans equivalent to the query plans used in software databases (Section 4.3.1).
However, because a query plan is closely related to the final datapath, the name
Query Planner was kept.

The query planner features a simple command shell for entering queries and load-
ing tables into the accelerators DRAM memory. It also has functions to create
illustrations of the decision tree produced by the input query, and illustrations of
the module placement derived from this decision tree. The query planner’s parsing
function is a bit more advanced than what is needed for this project. This was done
to provide a generic solution that can be easily extended in order to provide more
SQL operators.

Before any queries can be executed by the accelerator one or more tables have to
be uploaded to the MAX3 card memory. The table reading from the database is
performed by the query planner, and the transfer to memory is done by the interface
application. The query planner keeps track of the tables stored in the MAX3 card
memory. Therefore, we only upload tables that are not currently mirrored on the
FPGA board.

A table could be stored on disk in several different ways. Database implementations
typically have their own native storage scheme, and MySQL is no exception. MySQL
can also export the tables to an SQL script file so that it can be imported by another
database management system.

As an alternative, an export of the tables to comma separated values (CSV) was
used. With this approach, information about table relationships and field prop-
erties gets lost in the conversion. However, this functionality is not required for
a baseline implementation of the accelerator. Moreover, adding a more advanced
interface to the MySQL database would have only very little impact on the FPGA
hardware.

Currently, we export the tables to CSV files and add a custom header to the files
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Figure 5.2: Collaboration diagram for the tableref t struct. It shows the data
structure the query planner uses to store information about the tables and its fields.

manually. This custom header states the table name and the data types and lengths
for all the fields. This CSV file can then be read by the query planner which aligns
the fields and adds padding where necessary, as described in Section 4.8.1.

The transfer to the memory is handled by the interface application described in
the next section. Information about the tables and the fields is stored in a data
structure shown in Figure 5.2. The tableref t struct links the table name to a
memory address. This information is used by the query planner to figure out the
module placement and construct the initialization data stream.

A call graph of the query planner software is shown in Figure 5.3. The command
line function has been left out so that the function call order of a typical run can
be viewed from top to bottom. At startup, a table reference object is created to
accommodate the information from the first table. Then the table is loaded in by
the readCSVtable() function. The calls to the interface software have been omitted
since they do not belong to the query planner.

After the table has been loaded into memory, the accelerator is ready to accept
queries. A query is then parsed by the parseQuery() function, resulting in a
query t struct. The graph in Figure 5.4 on page 60 shows the hierarchy of the
structs that now contain the information in the query. As a feedback to the user a
graph is drawn of the decision tree derived from the WHERE clause in the query. See
Section 4.5 for more details on the WHERE clauses.

An example tree produced by the query planner is shown in Figure 5.5 on page 61.
This decision tree is realized by the condition t structs from Figure 5.4 on page
Figure 60. These nodes are either relational operators or they are logical operators
and have left and right branches.

The next step is for the query planner to derive the module placement from this
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Figure 5.3: Call graph for query planner. Command line and MAX3 interface
functions omitted.

decision tree. The placeModules() function traverses the decision tree the way it
was shown in Figure 4.10 on page 39 to find the module placements. This operation
yields a linked list of module objects. The order of these module t structs (Figure
5.6 p. 61) corresponds to the order in which they must be configured onto the FPGA
to form the datapath.

A visual feedback like the one in Figure 5.7 on page 62 is presented to the user. Next,
the initialization data that is necessary to set the modules internal register needs to
be generated. This is done by the configureModules() function. It combines the
information from the table reference and the condition nodes to figure out where
in the stream the fields of interest will be for every module. This, together with
the match values and the ordering of the modules, enables the query planner to
generate initialization data for a particular query.

At last, the initialization data can be retrieved by the getConfigData() function,
ready to be streamed to the modules. Once these steps have been completed and the
initialization data has been written to the modules, the table resides in memory and
the datapath is set up. The accelerator is now ready to execute the query.

5.1.2 Interface Application

The interface application communicates directly with the MaxelerOS through the
MaxCompilerRT run-time library. A typical call graph is shown in Figure 5.8 on
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Figure 5.4: Collaboration diagram for the top level struct query t . The interesting
part in this project is the where t object. It owns one or more condition t nodes.
These nodes form the decision tree by pointing to other condition t nodes with
its left and right branches.

page 62. The interface application must maintain data structures between every
service call from the query planner. This is done by keeping static objects in the
application so that they do not change between calls.

The result stream from a query in progress is returned to the host computer in
real time. The problem is that the number of records to be returned is not known
in advance because the number is data dependent. The MaxCompilerRT offers
different ways to handle streams in software, including an asynchronous method
using ring buffers. Unfortunately there is no interrupt that can be generated by the
hardware for any of the methods, so there is no way for the hardware to tell the
accelerator that the query has in fact finished.

To solve this tricky situation we use a control stream in parallel with the output
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Figure 5.5: Visual feedback from the query planner showing the decision tree from
the WHERE clause part of the query:
SELECT * FROM table1 WHERE IntA>-2 AND
ShortStr="Shakespeares" OR LongStr="The Tragedy of Hamlet, Prince

of Denmark is a tragedy by William Shakespeare. Set in the Kingdom

of Denmark, the play dramatizes the rev"

module_t_

+ module_type

+ input

+ output

+ columnName

+ matchString

+ matchInt

+ operator

+ outResultCount

+ dataType

+ configData

+ configDataLength

 output

input

A doubly linked list of modules 
is used to describe ordering of 
modules in the data path.

Figure 5.6: Collaboration diagram for the module t struct. This data object con-
tains all the information the query planner has on the modules, including the ini-
tialization data.

stream carrying the result records. To avoid deadlocks in the interface application
we choose the asynchronous ring buffer stream interface. This allows us to use
polling to check if new data has arrived on the streams. Using Algorithm 5.1 to
read from the output and control streams ensures that the application continues to
fetch results until the query has completed.
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Module Placement

INT_COMP PM_SIMPLE AND PM_SRL OR

Figure 5.7: Visual feedback from the query planner showing the datapath. The
module types and layout is derived from the tree in Figure 5.5. Dotted lines around
the AND and OR modules indicate that they are absorbed by the previous module.

query_planner

setup_FPGA

run_sanity_check

load_memory

run_configure

run_query_stream_from_dram

shutdown_FPGA

create_buffer

run_query_stream_from_host

next_marker

setup_linear_address_generator_body

Functions related to the
input/output ring bu� er.

Figure 5.8: Call graph for the interface application showing a typical run.

The first step in getting the hardware operational is to configure the FPGA with the
initial bit file. That, and setting up the input and output streams, is done by the
setup FPGA() function. For loading tables into the memory the query planner uses
the load memory() function. It takes a pointer to a memory location containing
the raw table data produced by the query planner and loads it in to a specified
location in the MAX3 cards memory.

The next step is to configure the modules onto the FPGA and initialize them.
Currently the software does not reconfigure modules, it only writes initialization
data to the modules already present in the datapath.

Using the run query stream from dram() function, tables can be streamed from

Algorithm 5.1 Output synchronization algorithm.

received← 0
total← −1
while total ̸=received do

if output stream has data then
fetch results
received← received+ 1

end if
if control stream has data then

total←stream item
end if

end while
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a memory location. The run query stream from host() function streams tables
directly from the host computer. Of course, for accelerating queries only the DRAM
streams can be used because streaming from the host computer through PCI-express
is too slow. But the host streaming function is still interesting for debugging and
testing.

The interface application can also run a sanity check to see if the datapath has
been corrupted. This is done by executing a query on a small number of rows that
have been hand crafted and that have known results. The sanity check then simply
checks the results to see if they match the correct answers.

5.2 Static System

The implemented static system was floorplanned in single island style similar to the
concept described in Section 4.1.2 and shown in Figure 4.2 on page 29. Due to the 5.5
hours of compile time needed to place and route the single island implementation,
and due to challenges regarding the blocker macros, many overnight compilations
had to be done. To address the problems with the blocker macro, all the routing
attempts were done on the single island style implementation.

Nevertheless, the final implementation of the static system fulfills the conceptual
description that was given in Section 4.8. The system includes all the streams
sketched in Figure 4.17 on page 50. Ultimately, after a lot of experimenting, the
routing in the partial region completed without any violations.

5.2.1 VHDL Implementation

The static system is included in the Maxeler design flow through the inclusion of a
custom HDL node in the Java code that is compiled with the MaxCompiler. The
MaxCompiler was described in Section 2.2, and we learned that is was basically a
Java to VHDL compiler. Using a custom HDL node allows us to include our static
systems’ VHDL description as a component in the Maxeler design flow.

Most of the VHDL code of the static system consists of port mappings and bus
assignments. Streams must be connected to the ICAP port, and to and from the
connection macros. These connection macros act as anchors inside the partial region
in order to force the Xilinx tool to route signals to and from the partial region. The
signal assignments between connection macros have to be set up correctly in the
VHDL code. With this assignment, we define the physical wire that will later be
used to route a specific bit signal.

The static system also has control logic for initiating memory streams and switching
between the host and memory as source. It is also responsible for outputting the
number of returned data chunks to the host computer upon completion of a query
execution. This is output using a dedicated control stream once the last data chunk
has been processed. The information is used by the interface application (Section
5.1.2) to synchronize the output results.
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Listing 5.1: Defining the interface to the partial region in the VHDL code. In-
put/output component instantiation.

macro : macro_io

port map

(

clk => clk ,

in_data => io_to_first_module_data ,

in_state => io_to_first_module_state ,

in_results => io_to_first_module_results ,

out_data => io_from_last_module_out_data ,

out_state => io_from_last_module_out_state ,

out_results => io_from_last_module_out_results

);

The port mappings between connection macros have been put in a dedicated VHDL
component which is instantiated in the main static VHDL code. This gives us a
straightforward VHDL interface to the datapath shown in Listing 5.1. The macro io

component file consists of 6500 lines of port mappings, mostly generated by the
GoAhead tool.

5.2.2 Memory Management

During the development of this master thesis, an attempt was made to implement
a file system for the DRAM to store tables in, but the task was too complex to be
completed with satisfactory results within the limited time schedule. The lack of
simulation models for the Maxeler system resulted in a situation where debugging
had to be done on-chip using Chipscope Logic Analyzer.

With a build time of 75 minutes for every logic change made to the VHDL code
debugging was tedious. The idea was to first implement a working file system, and
then add pipeline stages to achieve the desired throughput. Looking at the time
spent debugging the almost complete file system makes it clear that this is not
feasible for one person in any reasonable amount of time.

Another problem with adding this file system to the design was that it consumed a
considerable amount of logic and routing resources. This would consume space on
the chip, leaving less space for partial regions. It would make routing more difficult
and the build time would be considerably longer, or might fail.

The unfinished implementation handles reads reasonably good, it is not far from
usable. Implementing reader hardware is simpler than doing its writing counterpart,
there are fewer steps involved in reading a file than writing it. A solution could
have been to write files directly to the DRAM from the host computer, and only
do reads from hardware. But, this would undermine the intent the file system was
developed for, namely to allow the hardware to store results and temporary results
independently of the host computer.

The Substitute Memory Manager As an alternative to the file system, tables
have been stored pre-formatted in the main memory. This was used for maximizing
throughput during experiments. Tables are uploaded directly from the host appli-
cation. The table entries are padded to be aligned with the word and chunk sizes as
described in Section 4.8.1 and as depicted in Figure 4.18 on page 52. The uploading
is handled solely by the software, it does not involve the custom HDL node.
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For managing the stream from memory through the datapath, a memory command
writer was implemented. It is controlled from the host computer through the use
of scalar inputs1. Initiating a memory stream is done from the host by setting the
start address and the number of chunks to read, then asserting a valid signal that
initiates the memory transfer.

The memory command writer issues memory commands to the Maxeler memory
controller. It requests continuous burst reads of the maximum burst size until the
requested number of chunks have been read. The maximum payload size is requested
every time because this gives the maximum throughput from the Maxeler memory
controller2. Because the burst size is 384B and the maximum number of bursts
requestable by one memory command is 255, each memory read then results in
384B ∗255 =97.92kB of data. Excess data will have to be discarded by the static
system.

5.2.3 Physical Implementation

The on-chip implementation of the database accelerator follows the description from
Section 4.1, and consists of a static part and one or more partial regions (a.k.a
reconfigurable regions). Naturally, the first attempt in implementing such a design
would be to use a single reconfigurable island.

PCI-express 
interface

DRAM 
related IO

Global
logic

Figure 5.9: An overview of the routing on the FPGA with an example query compiled
statically (no partial regions). The light blue colored lines are routed nets (wires).

This raises the question of where to physically place the partial region on the device.
For determining this we first look at a statically compiled implementation of the
system without any partial regions. By opening the fully routed netlist in the

1A scalar input is a MaxelerRT library call that can be used to pass a single operand to a
custom hardware module (HDL node).

2According to Maxeler employees on the Maxeler Developer Exchange message board.
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FPGA Editor tool we can inspect the routing and component placements of such
a design. Figure 5.9 reveals that the north east corner of the device is virtually
empty. Consequently, this is a favorable area to place the first partial region.

In this thesis the GoAhead floorplanning tool was used for creating the user con-
straints and the connection and blocker macros. The first step towards completing
the floorplanning of the static system is to define the partial area in GoAhead’s
graphical tool. In Section 3.2 we saw that the smallest granularity of reconfigura-
tion on the Virtex-6 device is one resource column wide, and the height of a clock
region.

The data bus is 512 bits wide, the state bus is 5 bits wide and the result bus is
8 bits wide. Therefore, the static/partial interface consists of 525 wires in total.
Each of the connection macros we are using can connect to four input and four
output signals. As a result of this, we need to place ⌈525/4⌉ = 132 connection
macros.

A connection macro occupies one configurable logic block (CLB). The connection
macros use double lines for the communication, which connect to every other re-
source column (CLB, BRAM or DSP). Because of this, two connection macros can
be placed adjacent to each other on every row of CLBs on the FPGA. This results
in two nested horizontal routing tracks. Using this information, we see that the
total number of rows needed to accommodate the connection macro interface is
132/2 = 66 rows.

By examining the device in FPGA Editor we determine the height of a clock region,
then by opening the device in GoAhead we see that this height has 40 rows of CLBs.
To place 66 rows we consequently need to use a partial region that has the height
of at least two clock regions.

Figure 5.10 shows a full device view of the Virtex-6 chip as it appears in the GoAhead
tool’s graphical user interface. We have selected an area for the partial region that
is the height of two clock regions in the north east corner of the device.

The width of the partial region is selected based on at least three criteria:

• The width of the partial region is proportional to the latency of the nets
crossing it. During the routing phase of the static system, these values will
have to be within the maximum latency allowed for the given clock frequency.

There is a trick to circumvent this problem. By placing flip-flops inside the
island the long logic path gets divided over several clock cycles. These flip-
flops will then later be overwritten by the modules, that themselves act as
pipeline stages. But for this first attempt, the region has a width that gives
a latency of 3.2ns for crossing nets. This gives a maximum clock frequency
that is 312.5MHz, which is sufficient for our purpose.

• Making the partial region wider than the implementation that is shown in
Figure 5.10 will result in a non-uniform resource footprint. This means that
more implementations of every module will have to be generated to fit to the
raised number of possible resource footprints.

• There must be space left for routing on either side of the partial region. The
input and output signals needs to be routed vertically along the west side of
the island, and because the buses are very wide, this will require a certain
amount of resources. Also, the return flip-flops on the east side of the island
must be implemented in a column of CLBs.
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Figure 5.10: Overview of the static system’s floorplan as seen in the GoAhead tool.
The partial region is the red box in the north east part of the chip.
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In the routing scheme for the partial region described in Section 4.1.2 and shown in
Figure 4.4 on page 30, the output signals are returned to the input side through the
partial region. Because each connection macro has the same number of inputs as
outputs we organize the routing between the connection macros according to Figure
5.11.

As shown in Figure 5.11, we used three connection macros per routing track. This is
necessary because the reconfigurable region has a tunnel for routing signals towards
east, and another tunnel to route towards west. Because of the two tunnels, there
exist in principle both possibilities, to route first towards east, or to route first
towards west. However, due to the routing path between the connection macros
CM1 and CM2 (that is completely embedded in the tunnel) this freedom is removed.
The router is forced to route into the reconfigurable region in east direction first,
while leaving the westward direction for the backward path.

FF
CM2

CM3

CM1

Figure 5.11: The routing scheme between the connection macros in the partial re-
gion. The green path will constitute the processing pipeline once the modules have
been placed, and the blue path carries the processed results back again.

Implementing the static system in the GoAhead tool is done by using the graphical
user interface (GUI). Every action done in the GUI produces a textual command
output. These commands can then be copied into a script file that can be used
to reproduce all the actions that were performed in the GUI. The final GoAhead
script that was used for producing the static system in this project can be found in
Appendix on page 102.

A close up view of the partial region as it is seen in GoAhead is shown in Figure
5.12. We can see that the 66 rows of connection macros (marked in yellow) have
been distributed over the whole height of the partial region. The three columns of
connection macros are identical and implement the routing scheme that was shown
in Figure 5.11.

The region marked in red shown in Figure 5.12 marks the partial region, the area
GoAhead will produce a blocker macro for. This blocker macro will then be added
to the netlist before the routing phase is started. When the router has completed,
this blocker macro will be deleted. Then the netlist is re-saved, and the static
implementation is complete.

Running the place and route for our implementation of the static system to com-
pletion takes about five and a half hours, if the design is routable. A quirk in
this process is that it only works if the Xilinx router, par, is started with the ’-xe
c’ switch. This switch tells par to go on forever, even if the router detects an un-
routable situation. If we do not specify this switch, the router will exit and output a
message telling the user that it has detected an unroutable situation. But from trial
and error we know that this is not always the case, so we specify the go-on-forever
switch.

Unfortunately, when implementing a new design, sometimes the design is un-
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Figure 5.12: A close up view of the partial region as seen in the GoAhead floorplan-
ning tool. The red area is the partial region and the columns of yellow boxes mark
the connection macros.

routable because of errors in the blocker macro or because of unfavorable com-
ponent placements. The problem then is that there is no way predict if the router
will complete or not, and the router might continue forever without finding a solu-
tion.

The Fully Routed Design Figure 5.13 shows the fully routed static design. In
comparison with the non-partial implementation shown in Figure 5.9 on page 65,
at first glance, we cannot see that the current routing occupies a larger area. But
we can see that the partial region has drawn a lot of the logic from the southern
part of the chip towards the north east corner. By examining closer, we see that
the areas closest to the partial region are congested with routing. There are still
logic resources available in the area.

Figure 5.14 on page 71 shows a close up picture of the partial region. Here we can
see the horizontal wires that connect the input to the output. They are composed
of the previously mentioned double lines. There is also some vertical routing in
the partial region, this is the clock net, a global logic net that connects to all the
resources in the partial region.

By the vertical edges of the partial region and in the middle of it we can see the
connection macro columns as a slight accumulation of (light blue) routing. This
figure shows the same snapshot of the device as the picture from GoAhead in Figure
5.12, only this is the actual physical implementation of it.

Figure 5.15 on page 71 shows a close up of the western border of the partial region.
The two middle columns of LUTs (blue boxes) are the connection macros. The
blocker macro has been manually deleted, so the occupied wires in the partial region
are double wires that go between the connection macros, or they belong to the clock
net.

The V-shaped wires inside the partial regions are the double wires entering the
switch boxes. There are two sets of double wires in each direction. These two sets
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Figure 5.13: The fully routed netlist of the static system opened in the FPGA Editor.
All the blue lines are used wires (nets). The leftmost picture shows the routing with
the blocker macro deleted. The righmost show the clock net that goes to the partial
region marked in red. More details are shown in Figure 5.14 and Figure 5.15.

are interleaved by one column, so that one set always bypass the switchboxes that
the other set connects to. This can also be seen in Figure 5.15. At every V-shaped
net a set of double wires go into the switch box, while the other set bypasses it on
top of the V-shaped routing.

5.2.4 Placer Tool Problem

The Xilinx design flow from synthesis to place and route is shown in Figure 5.16.
In the Map phase design elements get mapped to device resources. Traditionally
placement of these elements on the device was done in the PAR phase, thus the
name place and route. For legacy reasons PAR has kept its name even though
placement is now done in the Map phase by the MAP tool.

The design flow for creating the static system containing a partial region is listed on
page 27. A notable quirk with this design flow is that a wire blocking hard macro
is placed over the partial region after the placement phase. This means that all
components are placed on the device, but not in the partial region because of the
user constraints prohibiting resource usage in this area. After the completion of the
MAP tool, a blocker macro is added to the netlist. This blocker macro is a dummy
net that occupy all wires that we do not want being used for routing. The blocker
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Figure 5.14: A close up view of the partial region from Figure 5.13. All the blue
lines are routed wires (nets).

Figure 5.15: A close up view of the western edge of the partial region from Figure
5.14. The two columns of blue boxes slightly to the right of the center are the
connection macros. The lines and V-shaped lines to the right of them are the double
lines that are used for the static/partial interface and for the return signals. The
V-shapes are the double lines entering the switch boxes.

macro effectively acts as a prohibitor for routing. This is necessary because no such
wire prohibit statement exists in the regular user constraints.
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Figure 5.16: An overview of the Xilinx design flow.

The placer tool sees a region on the FPGA that it cannot place logic in, but that
apparently can be routed through. The placer tool will therefore attempt to place
the components in relation to each other so that the routing distance is as small as
possible, as long as all user constraints are met. The placer will consequently not
take into account that routing through a partial region will be prohibited for the
static routing due to the blocker macro.

Figure 5.17: A picture from FPGA Editor showing unrouted in the area of the
partial region. The circled area contains an erroneous placement of components.
An explanation for this is illustrated in Figure 5.18.

An example of such a problem is depicted in Figure 5.17. The image is a screenshot
from the FPGA Editor tool displaying the unrouted netlist of the static system. It
is zoomed in on the partial region of the static design. The green lines are unrouted
nets, and the grey boxes and dots in the background are resources such as block
RAM and slices.

Inside the red ring in Figure 5.17 an unlinearity in the grid of unrouted nets can be
seen. The only possible path into the partial region will be on the east side of it,
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that will be placed in the prohibited area later.

Where to place?

Figure 5.18: An explanation of the placer tool problem.

not on the south side where the components have been placed. Figure 5.18 shows
an illustration of what has happened. The return flip-flops have been erroneously
placed because the placer tool does not know about the blocker that will be placed
there after the Map phase has finished. The result is a netlist that is unroutable.
A large number of wires would have to be routed around the corner of the partial
region, and back again.

The apparent solution to the specific problem in 5.17 is to add the return flip-flops
to an area group. An area group is a user constraint that tells the placer tool
that a specific component must be placed within a specific region on the device.
Adding the return flip-flops to an area group that is adjacent to the east end of the
partial region would force the placer tool to place them where we know that they
belong.

These problems can be challenging when working with large designs such as our
static implementation. There are 525 bit wires streaming through the partial region
in each horizontal direction. This draws a lot of logic towards the input and output
of the partial region. Some of the logic belongs to our design and some is part of the
Maxeler system. Many of these components have to be area constrained in order to
get a fully routed design that also meets timing requirements. This was particularly
challenging because of the very long tool run time.

The floorplanning has to be done on a component level. Some of the logic might
have to be split into different VHDL components to be area constrained. This was
the case with the return flip-flops in the example. They were originally a ten-line
piece of code before they were placed in a dedicated component. This return flip-flop
component was then instantiated in the original VHDL file.
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5.3 Partial Modules

Our module library consists of three modules, the integer compare module, the sim-
ple pattern match module, and the long string pattern match module. The modules
were implemented in VHDL and functionally verified in a simulation environment
using Modelsim. Modelsim is a digital simulation and verification tool developed
by Mentor Graphics.

The modules were also statically compiled for selected queries, and the on-chip
functionality was verified by the use of Chipscope. Chipscope is an embedded
software based logic analyzer that is part of the Xilinx tool chain. It is capable of
capturing the value of internal vectors in an FPGA and presents them to the user
as waveforms.

5.3.1 VHDL Implementation

Modules can be connected in any order to form a datapath, so they must all share
the same entity (Listing 5.2). The in data and out data buses form the 512-bit
wide datapath that is streamed through the modules. In addition, it is also used
for initializing the modules during the module initialization phase.

Listing 5.2: Module entity

entity module is

port

(

clk : in std_logic;

in_data : in std_logic_vector (511 downto 0);

in_state : in std_logic_vector (4 downto 0);

in_results : in std_logic_vector (7 downto 0);

out_data : out std_logic_vector (511 downto 0);

out_state : out std_logic_vector (4 downto 0);

out_results : out std_logic_vector (7 downto 0)

);

end module;

The in state and out state signals are state signals that are propagated along
with the data chunks. It is a 5 bit signal where the first 27 number values translate
into chunk numbers. The top five number values are special states for signaling idle
cycles, init states, query done, or reset. The exact state values and other constants
are specified in a VHDL library common to all modules. An excerpt from this
library is shown in Listing 5.3.
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Listing 5.3: State signals (module pkg.vhd)

constant CHUNK_0 : std_logic_vector (4 downto 0) := "00000";

constant CHUNK_1 : std_logic_vector (4 downto 0) := "00001";

constant CHUNK_2 : std_logic_vector (4 downto 0) := "00010";

constant CHUNK_3 : std_logic_vector (4 downto 0) := "00011";

constant CHUNK_4 : std_logic_vector (4 downto 0) := "00100";

constant CHUNK_5 : std_logic_vector (4 downto 0) := "00101";

constant CHUNK_6 : std_logic_vector (4 downto 0) := "00110";

constant CHUNK_7 : std_logic_vector (4 downto 0) := "00111";

-- ... we dont name the rest of the chunks.

-- names are only for debugging , except the last

constant CHUNK_LAST : std_logic_vector (4 downto 0) := "11010";

constant IDLE : std_logic_vector (4 downto 0) := "11011"; -- 27

constant INIT : std_logic_vector (4 downto 0) := "11100";

constant INIT_PHASE2 : std_logic_vector (4 downto 0) := "11101";

constant DONE : std_logic_vector (4 downto 0) := "11110";

constant RESET : std_logic_vector (4 downto 0) := "11111";

All modules consume and output one data item every clock cycle. The data bus,
state bus and result bus are synchronized and propagated together. This means
that if the data signal is delayed by n clock cycles the result and state signals also
must be delayed by n clock cycles.

Result Signals The in results and out results form the intermediate result
signal path. Every module produces one result signal. In Section 4.5 we learned
that the number of intermediate signals between two modules is equal to the tree
height at the particular node in the corresponding expression tree. A module takes
in results from the previous modules. These results are either consumed by this
module or another result is added to it before it is forwarded.

Initialization The concept of initialization was described in Section 4.6.1 and
meant setting the internal registers of the modules. After the modules have been
physically placed on the device, they have to be initialized. This is achieved by
using the special INIT and INIT PHASE2 state signals, and writing the configuration
data through the data bus.

Configuration of a module always start with the input state being set to INIT

and the initialization data for the specific module set on the data bus on the same
clock cycle. The 512 bits wide data bus is then interpreted as 16 32-bit initialization
words, where each word position has a unique meaning to the modules. For example,
one word is used as an address field to individually access the modules.

The DONE State The DONE state is pushed onto the datapath immediately
after the last input chunk has been put on the datapath. To the modules this state
means exactly the same as an IDLE state would have meant. This state is used by
the static system to flush the pipeline that the datapath constitutes. When the
DONE state emerges at the output of the datapath it signals that the last chunk has
been processed. Then the static system will output the number of returned chunks
so that the stream can be synchronized by the interface application as described in
Section 5.1.2.

Idle Cycles Since the input to the wrapper can run out of data, and the output
can stall at any time, the datapath must have some kind of flow control. In the
wrapper it is advantageous that the datapath is designed to work without back
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pressure. Instead, there is a special IDLE state that is fed into the datapath when
there is no input data. In the modules, this IDLE state acts as a no-operation
operand, causing them to do no internal changes. Having the modules accept a new
data item every clock cycle means that the flow control problem can be handled
entirely by the wrapper, and thereby simplifying the module design.

5.3.2 Speed Optimization

The unoptimized modules had maximum speeds ranging from 175MHz to 224MHz.
These numbers are based on the latency reported by the Xilinx synthesis tool.
The real maximum frequencies once the modules have been subject to place and
route can differ from these. The unoptimized modules are limited in speed by the
long logic path from the input to the output. Worst case, because the modules are
confined to a tall, narrow area the real maximum speeds could be much lower.

Since there is no way to run timing verification on dynamically reconfigured modules
we must ensure that the modules are fast enough to avoid timing violations. First
of all every module must be isolated in its own beginning to end latency. This is
best done by putting registers at the inputs and outputs so that the first thing on
the input side of a module is a flip-flop. Instead of forwarding the output signals
directly to the next modules it goes into registers on the output side, and from there
out of the module. This consumes logic and adds two clock cycles to the pipeline,
but it ensures correct operation.

Component Min period Max freq.
module int compare 4.459ns 224.248MHz
module pattern match simple 4.929ns 202.901MHz
module pattern match srl 5.714ns 175.000MHz

Table 5.1: Component’s timing scores before optimization.

Component Min period Max freq.
module int compare 1.956ns 511.365MHz
module pattern match simple 2.724ns 367.148MHz
module pattern match srl 2.966ns 337.103MHz

Table 5.2: Component’s timing scores after optimization.

To speed up the slow paths inside the modules pipeline stages were added on strate-
gic places, attempting to divide the long paths into smaller ones. Three pipeline
stages were added to the Long String Pattern Match Module, two to the Integer
Compare Module and one stage was added to the Simple Pattern Match Module.
After these changes the Xilinx synthesis tool reports the speeds of the modules to
be between 337MHz and 511MHz. Table 5.1 shows the maximum frequency for the
unoptimized modules and Table 5.2 shows the improvement after pipeline stages
have been added.

With this optimization, the target clock frequency of 300MHz could be achieved for
any combination of these modules. These have consequently a processing through-
put of close to 19.2GB/s.

76



CHAPTER 5. IMPLEMENTATION

5.3.3 Physical Implementation

The floorplan for generating the partial modules was created with the help of the
GoAhead tool. The whole concept of connection macros relies on the static region
and the partial modules having compatible interfaces. Therefore, the same connec-
tion macro placements were used as in the static system. The difference is that
they were moved to the area outside the partial region like the concept described
in Figure 3.3 on page 24.

Because of the unreasonable long time place and route takes on the large device we
are using, the modules were generated using a device description for the smallest
Virtex-6 device available. The resource footprint is still the same as on the large
device, so the modules can be routed on this smaller device to save time. Subse-
quently, all the logic and routing belonging to the reconfigurable modules can be cut
out by using a function in the GoAhead tool. Then differential bitstreams can be
generated ready for transfer to the ICAP configuration port of the FPGA.

The process of physically implementing the modules in GoAhead is in a sense a
mirror process of the procedure for implementing the static region. Instead of
blocking the wires in the partial region, the wires that are not in the partial region
must now be blocked. In addition, the placer must be prohibited from placing
components outside of the partial region. The last task is accomplished by a user
constraint instructing the placer to place the module components inside the partial
region. This constraint can be generated by GoAhead.

Figure 5.19: A view of the smallest Virtex-6 device in GoAhead. The device is
floorplanned for a module implementation.

The task of blocking the wires in the entire region outside of the partial region
would mean that a very large blocker macro would have to be generated. This can
also be done by GoAhead, but it is actually sufficient to use a blocker macro that
only extends a short distance away from the partial region.

On Virtex-6 FPGAs, local wires have different lengths. The longest distance that
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can be reached from one switch matrix using local wires is another switch matrix
in a radius of four switch matrices. Consequently, a fence being at least four switch
matrices wide will ensure that no routing outside the module will be used. Further-
more, Virtex-6 FPGAs provide special long lines. If these routing resources shall
be blocked, the fence might be designed wider, as a long line connects every switch
matrix along its way. However, GoAhead provides commands for automatically
creating blocker fences.

The layout used to generate the modules can be seen in Figure 5.19, which is a
screenshot from the GoAhead tool. Here we can see the partial region in a lighter
red color surrounded by a blocker macro fence, which is the darker red color. The
connection macros are now placed just outside of the partial region along the vertical
borders. Placing them so close to the border puts more pressure on the placer tool to
place components closer to the connection macros that they are connected to.

The GoAhead script used to generate the placement constraints and the blocker
macro for the partial modules can be viewed in Appendix on page 105.

Figure 5.20 shows the nets in the fully routed design. This particular module is
an integer compare module. The right and left side of the image show exactly the
same area of the device. On the left side the blocker macro is still in place. On the
right side the blocker macro has been deleted.

Figure 5.20: A screenshot from FPGA Editor showing the nets of the fully routed
integer compare module. On the left side the blocker macro is still present. The
right image shows the module after the blocker macro has been deleted.

On the right side of the image we can see the space the module occupies. It is the
tall narrow area almost saturated with routing. The horizontal wires protruding

78



CHAPTER 5. IMPLEMENTATION

from the module are the double lines that go to the connection macros. These areas
on both sides of the module will not be part of it once it has been cut out, only the
wire routing will be preserved.

The blocker macro is not meant to be removed before the blocker is cut out of the
design, it is removed to allow us to inspect the routing belonging to the module.
In fact, if the blocker macros are deleted the accelerator would not function at all.
In Section 4.1.2 we concluded that the best way to get the output signals back to
the input side of the partial region, was to route them back through the partial
region.

The ’tunnels’ that go through the partial region must also be present in every
module for it to work. If not, configuring a module onto the datapath would create
a gap in the routing. The return signals use double lines, like all the routing to
and from the connection macros does. The GoAhead tool can be used to add these
double wires to the blocker macro. In this case, the module would provide the
routing for the return datapath as a part of the blocker net.

Figure 5.21 shows a close up view of a switch box somewhere inside the module.
The wires marked red belong to the blocker macro. The V-shaped red arcs in the
picture are the return wires. In the picture there are other wires marked red that
are not related to the return wires. These are other, longer lines that have to be
blocked to prevent the router from exiting the partial region. These wires can also
be seen on the far left side in Figure 5.20, extending from the blocker.

Figure 5.21: A view of a switch box and two slices inside the module. The nets
marked in red belong to the blocker macro. The V-shaped red nets are the double
lines entering the switch box.

These methods were applied to implement all three modules. Figure 5.22 shows a
comparison of these three modules. The integer compare module on the left and the
simple pattern match module in the middle have the same width. The long string
pattern match module on the right is wider than the other two modules. Because
it is more complicated, and thus requires more logic and routing resources.
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Examining of the implemented modules, we see that we are bound by the routing
resources, not the logic resources. The modules are tall and narrow, consequently
they require a lot of vertical nets to be routed. The shortage of routing resources
is one of the challenges encountered when dealing with very large vectors in FP-
GAs.

Figure 5.22: From left to right, integer compare module, simple pattern match mod-
ule and long string pattern match module.
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Results

To partially reconfigure an FPGA, a differential bitstream is required. The differ-
ential bitstream describes the logic changes that needs to be made on the FPGA.
Due to issues with the relocation of modules, the differential bitstream generation
was not successful. Without the correct differential bitstream, the reconfiguration
will not work correctly.

The problem is related to the relocation of modules from one placement on the
device to another. All modules are built once for every resource footprint, and thus
they have specific placement values in the netlist. In our case, they were built on a
smaller device with the same resource footprint to save time. Because of this, the
module netlist must be ’cut out’ from the device netlist that it was built in before
the differential bistream can be generated.

The GoAhead tool provides a function for relocating modules. Unfortunately, what
worked on the Xilinx Spartan-6 FPGAs did not work correctly on the Virtex-6
architecture that was used in this thesis.

Debugging the GoAhead tool is beyond the scope of the author of this thesis, and
the solution to this problem came too close to the thesis deadline for it to be
implemented. Therefore the tests were performed on an implementation where the
three modules had been compiled statically.

However, the static system was compiled with a stream interface to the internal
configuration access port (ICAP) in the FPGA. In Section 3.4 we learned that
the Xilinx FPGA Editor tool could be used for creating differential bitstreams for
testing purposes. This was done earlier in the project to test the functionality of
the ICAP port.

A differential bitstream that changed a logic AND gate to an XOR gate was gen-
erated with the use of FPGA Editor. Reconfiguring this simple logic gate in a test
design verified that the connection to the ICAP port was working correctly.

Therefore there is reason to believe that it would have worked if the correct dif-
ferential bitstream had been available. In that case, the results from the following
tests would have been exactly the same.

A Case Study A query consisting of three modules was compiled. The query
contained an AND operator, an OR operator, a ’>’ operator and two ’=’ operators.
The ’=’ operations were performed on string values. One record in the data set
(table) spans over three chunks.
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The decision tree for this query is similar to the one in Figure 5.5 on page 61. One
string is 12 bytes long, while the other is 136 bytes long. This results in a datapath
consisting of one module of each sort, and a module placement like the one shown
in Figure 5.7 on page 62.

To monitor the execution of the test queries the accelerator was compile with se-
lected signals of interest mapped to an IP core from Chipscope. This enables us to
capture the value of internal vectors while the query is executing. The captured data
is then downloaded via a JTAG-cable and displayed as wave plots in the Chipscope
Logic Analyzer tool.

A Needle in a Haystack In this test we will initialize the modules with matching
patterns that only match one record in the entire table. The accelerator must find
the one record that matches, the needle in the haystack, and output it to the host
application.

A data set consisting of 100,000 chunks (33,333 records) was used. This is equal to
100, 000∗64B = 6.4MB (6.4∗106) of data. Because 131,072 samples is the maximum
a Chipscope core can capture in one run, this is about the greatest data set we can
use that will fit in this window.

Figure 6.1 on page 84 shows a wave plot from this test. The circled numbers in the
figure correspond to numbers in the following list:

1. The query is initiated by the scalar dram addr valid signal. This tells the
accelerator to start streaming from the DRAM.

2. The accelerator immediately starts to request data from the memory by issu-
ing memory commands.

3. The memory controller responds by deasserting the empty signal. Data is
then streamed through the module pipeline as fast as the memory controller
can produce it.

4. Here, the matching record is found. The from last module results signal
changes value to tag the matching record. When the static system detects
this, the matching record is output to the host computer.

5. The query ends when the last record has been processed and the number of
matching chunks is returned to the host application over the control stream.

6. The memory controller keeps outputting data even though the last record
has been retrieved. This happens because the accelerator always requests the
maximum payload size from the memory controller to maximize throughput.
This excess data is discarded by the accelerator.

7. The software part of the accelerator decides that the query has completed and
deasserts the scalar dram addr valid signal. The system is now in the same
state as before the query started.

The query processing took a total of 102354 clock cycles. The time spent processing
the query at 100MHz is (100 ∗ 106)−1 ∗ 102354 = 1.02354ms. In this time 6.4MB of
data was processed. This gives us a throughput of (1.02354 ∗ 10−3)−1 ∗ 6.4 ∗ 106 =
6.25GB/sec.

This test was run at 100MHz, but the maximum speed the Maxeler system could
support is 300MHz. In Section 2.1 we said that the Maxeler system can provide a
memory stream of up to 38.4GB/s. If this is true, and the memory speed scales lin-
early, upping the frequency would give us a throughput of 3∗6.25GB/s = 18.75GB/s.
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This is close to the theoretical maximum of 19.2GB/s that we determined in Section
4.6.2.

Limited by the PCI-express Interface In this test we used the same hardware
setup as in the previous one, but the match values in the query have been slightly
altered so that every other row is a match.

To fit the entire sequence in one Chipscope run, a data set of only 10,000 chunks
(3,333 records) was used this time. This equals 640kB (640∗103) of data. This time
the amount of matching records accumulates faster than the PCI-express interface
can stream them to the host computer.

Figure 6.2 on page 85 shows a wave plot of a run with this setup. The circled
numbers in the figure corresponds to the numbers in this list:

1. The query is initiated by the scalar dram addr valid signal. This tells the
accelerator to start streaming from the DRAM.

2. At first the memory stream is going through the module pipeline at full speed.

3. The accelerator is producing results at a faster rate than the PCI-express
interface can output them. At this point the output buffer is full, and the
flow control hardware asserts the output stall signal. The static system
propagates idle cycles through the module pipeline when there is no valid
data at the input.

4. All the 3,333 records have been streamed through the module pipeline. The
number of matching signals is returned to the host computer.

5. The host computer deasserts the scalar dram addr valid signal, and the
accelerator is back to its original state.

The accelerator spent 108738 clock cycles processing the data, which means that
the time spent processing the query which ran at 100MHz was (100 ∗ 106)−1 ∗
108738 = 1.08738ms. That is almost the same as the time spent in the previous
test for processing ten times the amount of data. This gives us a throughput of
(1.08738 ∗ 10−3)−1 ∗ 640 ∗ 103 = 588.5MB/s.

The reported output speed of the PCI-express interface was 2GB/s. Only every
other record in this test was a match, this means that the PCI-express interface
must have been transferring data at about half of the throughput rate. 294MB/s is
only about 15% of the promised speed.

The decreased speed is probably due to the asynchronous ring buffer that is used
by the interface application. The decision to use this interface was explained in
Section 5.1.2. Previous experiments have shown that the PCI-express speed comes
much closer to the theoretical maximum when transferring directly from the DRAM
while not using the ring buffer.

A solution to this problem could be to let the accelerator stream the results back to
the memory. Once the query has completed, the host application will then have to
fetch the results from the memory. Another solution could be to define a minimum
’packet’ size for the output stream. Then there would have to be some kind of meta
data in the packets which the host application could use to locate the end of the
stream.
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Conclusion

The demonstration in the previous chapter showed that a query could be processed
at 6.25GB/s. The memory controller supports speeds of up to 38.4GB/s, and all
three modules also support clock frequencies of more than 300MHz. Therefore it is
likely that an implementation of our static system running at 300MHz could achieve
a throughput of more than 18GB/s.

The results suggest that for some queries the bottleneck is the interface to the
host computer. Even with the full 2GB/s, the PCI-express would still become
a bottleneck for some queries. The newest solid state disk RAID arrays used in
conventional databases are also in the gigabyte per second range. Accordingly,
the FPGA accelerator cannot compete solely based on throughput for all usage
types.

Performance gain depends heavily on the use case. A more complex data filtering
query with many operators would consume more CPU-cycles in a software database,
thus slowing it down. However, the throughput in our accelerator would not be
negatively affected by adding more logical or relational operators. On the contrary,
as long as there is enough space in the partial region to fit all the needed modules,
filtering out results would actually speed it up due to less data that needs to be
transferred.

The ultimate goal of this thesis was to dynamically stitch modules together at run-
time to form a query processing datapath in the FPGA. Although replacing the
modules dynamically at run-time was not achieved by the deadline for this thesis,
it has been demonstrated that FPGAs can be used to accelerate data filtering
queries.

We have also shown that a set of generic modules can implement a larger set of
SQL operator through the use of a custom initialization protocol. Furthermore, we
have shown that the WHERE clause part of a query can be translated into a sequence
of modules forming a query processing pipeline.

The findings in this thesis indicate that database problems involving complex fil-
tering operations can benefit from this kind of database accelerator.
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7.1 Future Work

This thesis has merely scratched the surface on the topic of database acceleration
using partial run-time reconfiguration, but it has demonstrated its potential. There
is still a lot that could be researched within the subject, starting with how to
implement the rest of the SQL operators.

For implementing SQL operators outside of the WHERE clause as modules, temporary
buffering in the DRAM is needed. If the static system could handle temporary
buffering, implementing data aggregate functions like the ones found in the HAVING
clause would be the next natural step.

Also, processing the JOIN clause and the ORDER BY clause requires buffering of tem-
porary results. These functions also require sorting functionality to be implemented
in the accelerator. This would require having two streams passing the modules si-
multaneously. One solution could be to define another mode of operation for the
datapath, where the 512 bits wide datapath is divided among two 265 bits wide
streams.

For further development of the findings presented in this thesis, the author recom-
mends using the concepts described from Section 4.5 and the rest of Chapter 4. It
is also recommended to read Chapter 5 and take note of problems that are particu-
larly challenging when designing a partially reconfigurable system using very wide
vectors.
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Appendix

Matlab Script for File System Overhead

1 c l e a r v a r s ;
2 c l f ;
3

4 b lockS i z eByte sS ta r t = 384 ;
5 totalMemSizeBytes = 24 ∗ 2ˆ30 ;
6 b i t S i z eO fA l l o c a t i o n I nd i c a t o r = 1 ;
7

8 i = 1 ;
9 b lockS izeBytes = b lockS i z eByte sS ta r t ∗ 5 ;

10 while blockS izeBytes < 100 ∗ 2ˆ10
11

12 s e c t o r S i z e ( i ) = blockS izeBytes ;
13 sectorCount = totalMemSizeBytes / s e c t o r S i z e ( i ) ;
14

15 i f sectorCount > 2ˆ16
16 wordSize = 4 ; %32 b i t
17 else
18 wordSize = 2 ; %16 b i t
19 end
20

21 overheadBytes ( i ) = sectorCount ∗ wordSize ∗ 2 ;
22 s lackSpace20000 ( i ) = 20000 ∗ s e c t o r S i z e ( i ) + overheadBytes ( i ) ;
23 s lackSpace10000 ( i ) = 10000 ∗ s e c t o r S i z e ( i ) + overheadBytes ( i ) ;
24 s lackSpace5000 ( i ) = 5000 ∗ s e c t o r S i z e ( i ) + overheadBytes ( i ) ;
25 s lackSpace2500 ( i ) = 2500 ∗ s e c t o r S i z e ( i ) + overheadBytes ( i ) ;
26 s lackSpace1000 ( i ) = 1000 ∗ s e c t o r S i z e ( i ) + overheadBytes ( i ) ;
27 s lackSpace500 ( i ) = 500 ∗ s e c t o r S i z e ( i ) + overheadBytes ( i ) ;
28

29 % get a l l s l a ck spaces for optimal so l u t i on s ca l cu l a t i on
30 for j = 1:70000
31 s lackSpace ( j , i ) = j ∗ s e c t o r S i z e ( i ) / 2 + overheadBytes ( i ) ;
32 end
33

34 i = i +1;
35 blockS izeBytes = blockS izeBytes + b lockS i z eByte sS ta r t ;
36 end
37 i = i − 1 ;
38

39 sma l l e s t = min ( s lackSpace , [ ] , 2 ) ;
40

41 %find optimal so l u t i ons
42 for a = 1 : i
43 for b = 1 : 70000
44 i f sma l l e s t (b) == slackSpace (b , a )
45 optimalFront ( a ) = sma l l e s t (b ) ;
46 end
47 end
48 end
49

50 optimalX = s e c t o r S i z e ( 4 : end ) ;
51 optimalY = optimalFront ( 4 : end ) ;
52

53 semi logx ( optimalX , optimalY ,
54 s e c t o rS i z e , s lackSpace20000 , s e c t o rS i z e , s lackSpace10000 ,
55 s e c t o rS i z e , s lackSpace5000 , s e c t o rS i z e , s lackSpace2500 ,
56 s e c t o rS i z e , s lackSpace1000 , s e c t o rS i z e , s lackSpace500 )
57

58 l egend ( ’ Optimal s o l u t i o n s ’ ,
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59 ’Meta data and s l a ck with 20000 f i l e s ’ ,
60 ’Meta data and s l a ck with 10000 f i l e s ’ ,
61 ’Meta data and s l a ck with 5000 f i l e s ’ ,
62 ’Meta data and s l a ck with 2500 f i l e s ’ ,
63 ’Meta data and s l a ck with 1000 f i l e s ’ ,
64 ’Meta data and s l a ck with 500 f i l e s ’ )

VHDL Code for the Module Library

1 l ibrary i e e e ;
2 use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
3 use IEEE . numer ic std . a l l ;
4

5 package module pkg i s
6

7 −− constants
8

9 −− i n i t s i gna l b i t pos i t i on constants for a l l modules
10 constant INIT DECREMENT POS : natura l := 0 ; −− word 0
11 constant INIT DECREMENT LEN : natura l := 8 ;
12 constant INIT CHUNK POS : natura l := 32 ; −− word 1
13 constant INIT CHUNK LEN : natura l := 5 ;
14 constant INIT LAST CHUNK POS : natura l := 64 ; −− word 2
15 constant INIT LAST CHUNK LEN : natura l := 5 ;
16 constant INIT LOGIC OP0 POS : natura l := 96 ; −− word 3
17 constant INIT LOGIC OP1 POS : natura l := 128 ; −− word 4
18 constant INIT LOGIC OP2 POS : natura l := 160 ; −− word 5
19 constant INIT LOGIC OP3 POS : natura l := 192 ; −− word 6
20 constant INIT LOGIC OP4 POS : natura l := 224 ; −− word 7
21 constant INIT LOGIC OP5 POS : natura l := 256 ; −− word 8
22 constant INIT LOGIC OP6 POS : natura l := 288 ; −− word 9
23 constant INIT LOGIC OP7 POS : natura l := 320 ; −− word 10
24 constant INIT LOGIC OP LEN : natura l := 3 ;
25

26

27 −− i n i t s i gna l constants s p e c i f i c to pat tern match module
28 constant INIT PM BITMAP POS : natura l := 352 ; −− word 11
29 constant INIT PM BITMAP LEN : natura l := 16 ;
30 constant INIT PM IS PHASE1 POS : natura l := 384 ; −− word 12
31 constant INIT PM IS PHASE1 LEN : natura l := 1 ;
32

33

34 −− i n i t s i gna l constants s p e c i f i c to compare module
35 constant INIT INTC VAL POS : natura l := 416 ; −− word 13
36 constant INIT INTC VAL LEN : natura l := 32 ;
37 constant INIT INTC OPERATOR POS : natura l := 448 ; −− word 14
38 constant INIT INTC OPERATOR LEN : natura l := 4 ;
39 constant INIT INTC WORD POS : natura l := 480 ; −− word 15
40 constant INIT INTC WORD LEN : natura l := 4 ;
41

42 constant EQUAL TO : s t d l o g i c v e c t o r (3 downto 0) := x”0” ;
43 constant GREATERTHAN : s t d l o g i c v e c t o r (3 downto 0) := x”1” ;
44 constant GREATER THAN OR EQUAL TO : s t d l o g i c v e c t o r (3 downto 0) := x”2” ;
45 constant LESS THAN : s t d l o g i c v e c t o r (3 downto 0) := x”3” ;
46 constant LESS THAN OR EQUAL TO : s t d l o g i c v e c t o r (3 downto 0) := x”4” ;
47

48 −− l o g i c gates
49 constant LOGIC NOOP : s t d l o g i c v e c t o r (2 downto 0) := ”000” ;
50 constant LOGIC AND : s t d l o g i c v e c t o r (2 downto 0) := ”001” ;
51 constant LOGIC NAND : s t d l o g i c v e c t o r (2 downto 0) := ”010” ;
52 constant LOGIC OR : s t d l o g i c v e c t o r (2 downto 0) := ”011” ;
53 constant LOGIC NOR : s t d l o g i c v e c t o r (2 downto 0) := ”100” ;
54

55 −− s t a t e s
56 constant CHUNK 0 : s t d l o g i c v e c t o r (4 downto 0) := ”00000” ; −− f i r s t chunk
57 constant CHUNK 1 : s t d l o g i c v e c t o r (4 downto 0) := ”00001” ;
58 constant CHUNK 2 : s t d l o g i c v e c t o r (4 downto 0) := ”00010” ;
59 constant CHUNK 3 : s t d l o g i c v e c t o r (4 downto 0) := ”00011” ;
60 constant CHUNK 4 : s t d l o g i c v e c t o r (4 downto 0) := ”00100” ;
61 constant CHUNK 5 : s t d l o g i c v e c t o r (4 downto 0) := ”00101” ;
62 constant CHUNK 6 : s t d l o g i c v e c t o r (4 downto 0) := ”00110” ;
63 constant CHUNK 7 : s t d l o g i c v e c t o r (4 downto 0) := ”00111” ;
64 −− . . . we dont name the r e s t of the chunks . names are only for
65 −− debugging , except the l a s t chunk
66 constant CHUNK LAST : s t d l o g i c v e c t o r (4 downto 0) := ”11010” ; −− l a s t chunk , 26
67 constant IDLE : s t d l o g i c v e c t o r (4 downto 0) := ”11011” ; −− 27
68 constant INIT : s t d l o g i c v e c t o r (4 downto 0) := ”11100” ; −− 28
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69 constant INIT PHASE2 : s t d l o g i c v e c t o r (4 downto 0) := ”11101” ; −− 29
70 constant DONE : s t d l o g i c v e c t o r (4 downto 0) := ”11110” ; −− 30
71 constant RESET : s t d l o g i c v e c t o r (4 downto 0) := ”11111” ; −− 31
72

73 −− funct ion dec lara t ions
74 function get word (n : natura l ; input : s t d l o g i c v e c t o r (511 downto 0) )
75 return s t d l o g i c v e c t o r ;
76 function set word (n : natura l ; word : s t d l o g i c v e c t o r (31 downto 0)
77 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r ;
78 function ge t pa r t ( from : natura l ; l en : natura l
79 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r ;
80 function s e t p a r t ( from : natura l ; l en : natura l ; part : s t d l o g i c v e c t o r
81 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r ;
82 function mux word (n : s t d l o g i c v e c t o r (3 downto 0)
83 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r ;
84 procedure downsh i f t p roc e s s
85 (
86 i n pu t s i g : in s t d l o g i c ;
87 input bus : in s t d l o g i c v e c t o r (7 downto 0 ) ;
88 output bus : out s t d l o g i c v e c t o r (7 downto 0)
89 ) ;
90 procedure up sh i f t p r o c e s s
91 (
92 i n pu t s i g : in s t d l o g i c ;
93 input bus : in s t d l o g i c v e c t o r (7 downto 0 ) ;
94 output bus : out s t d l o g i c v e c t o r (7 downto 0)
95 ) ;
96

97 end ;
98

99 package body module pkg i s
100

101 procedure downsh i f t p roc e s s
102 (
103 i n pu t s i g : in s t d l o g i c ;
104 input bus : in s t d l o g i c v e c t o r (7 downto 0 ) ;
105 output bus : out s t d l o g i c v e c t o r (7 downto 0)
106 )
107 i s
108 begin
109 for i in 0 to 6 loop
110 output bus ( i + 1) := input bus ( i ) ;
111 end loop ;
112 output bus (0 ) := i npu t s i g ;
113 end ;
114

115 procedure up sh i f t p r o c e s s
116 (
117 i n pu t s i g : in s t d l o g i c ;
118 input bus : in s t d l o g i c v e c t o r (7 downto 0 ) ;
119 output bus : out s t d l o g i c v e c t o r (7 downto 0)
120 )
121 i s
122 begin
123 output bus (7 ) := ’ 0 ’ ;
124 for i in 2 to 7 loop
125 output bus ( i − 1) := input bus ( i ) ;
126 end loop ;
127 output bus (0 ) := i npu t s i g ;
128 end ;
129

130 −− funct ions
131

132 function get word (n : natura l ; input : s t d l o g i c v e c t o r (511 downto 0) )
133 return s t d l o g i c v e c t o r i s
134 begin
135 return input (n∗32 + 31 downto n ∗32 ) ;
136 end get word ;
137

138 function set word (n : natura l ; word : s t d l o g i c v e c t o r (31 downto 0)
139 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r i s
140 variable r e t : s t d l o g i c v e c t o r (511 downto 0 ) ;
141 begin
142 r e t := input ;
143 r e t (n∗32 + 31 downto n∗32) := word ;
144 return r e t ;
145 end set word ;
146

147 function ge t pa r t ( from : natura l ; l en : natura l
148 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r i s
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149 begin
150 return input ( from + len − 1 downto from ) ;
151 end ge t pa r t ;
152

153 function s e t p a r t ( from : natura l ; l en : natura l ; part : s t d l o g i c v e c t o r
154 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r i s
155 variable r e t : s t d l o g i c v e c t o r (511 downto 0 ) ;
156 begin
157 r e t := input ;
158 r e t ( from + len − 1 downto from ) := part ;
159 return r e t ;
160 end s e t p a r t ;
161

162 function mux word (n : s t d l o g i c v e c t o r (3 downto 0)
163 ; input : s t d l o g i c v e c t o r (511 downto 0) ) return s t d l o g i c v e c t o r i s
164 begin
165 case n i s
166 when x”0” => return input (31 downto 0 ) ;
167 when x”1” => return input (63 downto 32 ) ;
168 when x”2” => return input (95 downto 64 ) ;
169 when x”3” => return input (127 downto 96 ) ;
170 when x”4” => return input (159 downto 128 ) ;
171 when x”5” => return input (191 downto 160 ) ;
172 when x”6” => return input (223 downto 192 ) ;
173 when x”7” => return input (255 downto 224 ) ;
174 when x”8” => return input (287 downto 256 ) ;
175 when x”9” => return input (319 downto 288 ) ;
176 when x”A” => return input (351 downto 320 ) ;
177 when x”B” => return input (383 downto 352 ) ;
178 when x”C” => return input (415 downto 384 ) ;
179 when x”D” => return input (447 downto 416 ) ;
180 when x”E” => return input (479 downto 448 ) ;
181 when x”F” => return input (511 downto 480 ) ;
182 when others => return input (511 downto 480 ) ; −− never happens
183 end case ;
184 end mux word ;
185

186 end module pkg ;

VHDL Code for the Integer Compare Module

1 l ibrary IEEE ;
2 use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
3 use IEEE . numer ic std . a l l ;
4 use work . module pkg . a l l ;
5

6 entity module int compare i s
7 port
8 (
9 c l k : in s t d l o g i c ;

10

11 i n data : in s t d l o g i c v e c t o r (511 downto 0 ) ;
12 i n s t a t e : in s t d l o g i c v e c t o r (4 downto 0 ) ; −− passed on unchanged
13 i n r e s u l t s : in s t d l o g i c v e c t o r (7 downto 0 ) ;
14

15 out data : out s t d l o g i c v e c t o r (511 downto 0 ) ;
16 ou t s t a t e : out s t d l o g i c v e c t o r (4 downto 0 ) ;
17 o u t r e s u l t s : out s t d l o g i c v e c t o r (7 downto 0)
18 ) ;
19 end module int compare ;
20

21 architecture behav ioura l of module int compare i s
22

23 −− i n i t i a l i z a t i o n re l a t ed s i gna l s
24

25 −− value to compare input with
26 signal compare val : s t d l o g i c v e c t o r (31 downto 0 ) ;
27 signal compare operator : s t d l o g i c v e c t o r (3 downto 0) := EQUAL TO;
28 signal word pos : s t d l o g i c v e c t o r (3 downto 0) := x”0” ;
29 signal match chunk : s t d l o g i c v e c t o r (4 downto 0) := IDLE ;
30 signal l a s t chunk : s t d l o g i c v e c t o r (4 downto 0 ) ;
31

32 type l o g i c o p e r a t o r s t i s array (0 to 7) of s t d l o g i c v e c t o r (2 downto 0 ) ;
33 signal l o g i c o p e r a t o r s : l o g i c o p e r a t o r s t ;
34

35 signal i n t e rmed i a t e 1 r e s u l t d e l a y : s t d l o g i c ;
36 signal i n t e rmed i a t e 1 i s l a s t c hunk : s t d l o g i c ;
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37 signal i n t e rmed i a t e 2 i s l a s t c hunk : s t d l o g i c ;
38 signal i n t e rmed i a t e 1 r e s u l t s : s t d l o g i c v e c t o r (7 downto 0 ) ;
39 signal i n t e rmed ia t e 1 da ta : s t d l o g i c v e c t o r (511 downto 0 ) ;
40 signal i n t e rmed i a t e 1 s t a t e : s t d l o g i c v e c t o r (4 downto 0 ) ;
41 signal i n t e rmed i a t e 2 r e s u l t s : s t d l o g i c v e c t o r (7 downto 0 ) ;
42 signal i n t e rmed ia t e 2 da ta : s t d l o g i c v e c t o r (511 downto 0 ) ;
43 signal i n t e rmed i a t e 2 s t a t e : s t d l o g i c v e c t o r (4 downto 0 ) ;
44

45 signal o u t r e s u l t s s i g : s t d l o g i c v e c t o r (7 downto 0 ) ;
46

47 begin
48

49 o u t r e s u l t s <= ou t r e s u l t s s i g ;
50

51 −− This process passes the s i gna l s to the next module .
52 −− Except from ou t r e s u l t s s i g , which i s updated in match p .
53 output p : process ( c l k )
54 variable i n da ta va r : s t d l o g i c v e c t o r (511 downto 0 ) ;
55 variable decrement : s t d l o g i c v e c t o r (7 downto 0 ) ;
56 begin
57 i f r i s i n g e d g e ( c l k ) then
58 i n da ta va r := in data ;
59

60 case i n s t a t e i s
61 when INIT =>
62 −− decrement f i r s t byte
63 decrement :=
64 ge t pa r t (INIT DECREMENT POS, INIT DECREMENT LEN, in da ta va r ) ;
65 decrement :=
66 s t d l o g i c v e c t o r ( unsigned ( decrement ) − 1 ) ;
67 i n da ta va r :=
68 s e t p a r t (INIT DECREMENT POS, INIT DECREMENT LEN, decrement , i n da ta va r ) ;
69 when others =>
70 end case ;
71

72 i n t e rmed ia t e 1 da ta <= in da ta va r ;
73 i n t e rmed i a t e 1 s t a t e <= i n s t a t e ;
74

75 i n t e rmed ia t e 2 da ta <= inte rmed ia t e 1 da ta ;
76 i n t e rmed i a t e 2 s t a t e <= in t e rmed i a t e 1 s t a t e ;
77

78 out data <= inte rmed ia t e 2 da ta ;
79 ou t s t a t e <= in t e rmed i a t e 2 s t a t e ;
80 end i f ; −− r i s i n g edge
81 end process ;
82

83 −− This process i s t r i g g e r ed when the input s t a t e i s INIT and the ” i n i t decrement byte ”
84 −− i s 0. I t s e t s the r e su l t d e l a y va r s tr ing , and which words should be ac t i v e .
85 i n i t i a l i z e p : process ( c l k )
86 begin
87 i f r i s i n g e d g e ( c l k ) then
88 i f i n s t a t e = INIT
89 and unsigned ( g e t pa r t (INIT DECREMENT POS, INIT DECREMENT LEN, in data ) ) = 0 then
90 −− t h i s c a l l i s for me!
91 match chunk <= ge t pa r t (INIT CHUNK POS, INIT CHUNK LEN, in data ) ;
92 l a s t chunk <= ge t pa r t (INIT LAST CHUNK POS, INIT LAST CHUNK LEN, in data ) ;
93

94 −− se t the bitmap t e l l i n g which words should be ac t i v e
95 word pos <= ge t pa r t (INIT INTC WORD POS, INIT INTC WORD LEN, in data ) ;
96 compare val <= ge t pa r t ( INIT INTC VAL POS , INIT INTC VAL LEN , in data ) ;
97 compare operator <=
98 ge t pa r t (INIT INTC OPERATOR POS, INIT INTC OPERATOR LEN, in data ) ;
99 l o g i c o p e r a t o r s (0 ) <= ge t pa r t ( INIT LOGIC OP0 POS , INIT LOGIC OP LEN , in data ) ;

100 l o g i c o p e r a t o r s (1 ) <= ge t pa r t ( INIT LOGIC OP1 POS , INIT LOGIC OP LEN , in data ) ;
101 l o g i c o p e r a t o r s (2 ) <= ge t pa r t ( INIT LOGIC OP2 POS , INIT LOGIC OP LEN , in data ) ;
102 l o g i c o p e r a t o r s (3 ) <= ge t pa r t ( INIT LOGIC OP3 POS , INIT LOGIC OP LEN , in data ) ;
103 l o g i c o p e r a t o r s (4 ) <= ge t pa r t ( INIT LOGIC OP4 POS , INIT LOGIC OP LEN , in data ) ;
104 l o g i c o p e r a t o r s (5 ) <= ge t pa r t ( INIT LOGIC OP5 POS , INIT LOGIC OP LEN , in data ) ;
105 l o g i c o p e r a t o r s (6 ) <= ge t pa r t ( INIT LOGIC OP6 POS , INIT LOGIC OP LEN , in data ) ;
106 l o g i c o p e r a t o r s (7 ) <= ge t pa r t ( INIT LOGIC OP7 POS , INIT LOGIC OP LEN , in data ) ;
107 e l s i f i n s t a t e = RESET then
108 match chunk <= IDLE ;
109 match chunk <= IDLE ;
110 l o g i c o p e r a t o r s <= ( others => ( others => ’ 0 ’ ) ) ;
111 end i f ;
112 end i f ; −− r i s i n g edge
113 end process ;
114

115 match stage 1 p : process ( c l k )
116 variable in word : s t d l o g i c v e c t o r (31 downto 0 ) ; −− b i t map
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117 variable r e s u l t d e l a y v a r : s t d l o g i c ; −− true or f a l s e
118 begin
119 i f r i s i n g e d g e ( c l k ) then
120 r e s u l t d e l a y v a r := i n t e rmed i a t e 1 r e s u l t d e l a y ;
121

122 i f i n s t a t e = las t chunk then
123 i n t e rmed i a t e 1 i s l a s t c hunk <= ’1 ’ ;
124 else
125 i n t e rmed i a t e 1 i s l a s t c hunk <= ’0 ’ ;
126 end i f ;
127

128 i f i n s t a t e <= CHUNK LAST then
129 i f i n s t a t e = match chunk then
130 in word := mux word ( word pos , in data ) ;
131 r e s u l t d e l a y v a r := ’ 0 ’ ;
132

133 case compare operator i s
134 when EQUAL TO =>
135 i f in word = compare val then
136 r e s u l t d e l a y v a r := ’ 1 ’ ;
137 end i f ;
138 when GREATERTHAN =>
139 i f s igned ( in word ) > s igned ( compare val ) then
140 r e s u l t d e l a y v a r := ’ 1 ’ ;
141 end i f ;
142 when GREATER THAN OR EQUAL TO =>
143 i f s igned ( in word ) >= signed ( compare val ) then
144 r e s u l t d e l a y v a r := ’ 1 ’ ;
145 end i f ;
146 when LESS THAN =>
147 i f s igned ( in word ) < s igned ( compare val ) then
148 r e s u l t d e l a y v a r := ’ 1 ’ ;
149 end i f ;
150 when LESS THAN OR EQUAL TO =>
151 i f s igned ( in word ) <= signed ( compare val ) then
152 r e s u l t d e l a y v a r := ’ 1 ’ ;
153 end i f ;
154 when others =>
155 end case ;
156 end i f ;
157 end i f ;
158

159 i n t e rmed i a t e 1 r e s u l t s <= i n r e s u l t s ;
160 i n t e rmed i a t e 1 r e s u l t d e l a y <= r e s u l t d e l a y v a r ;
161 end i f ; −− r i s i n g edge
162 end process ;
163

164 match stage 2 p : process ( c l k )
165 variable r e s u l t d e l a y v a r : s t d l o g i c ; −− true or f a l s e
166 variable o u t r e s u l t s v a r : s t d l o g i c v e c t o r (7 downto 0 ) ;
167 variable tmp : s t d l o g i c ;
168 begin
169 i f r i s i n g e d g e ( c l k ) then
170 r e s u l t d e l a y v a r := i n t e rmed i a t e 1 r e s u l t d e l a y ;
171

172 i f i n t e rmed i a t e 1 i s l a s t c hunk = ’1 ’ then
173 downsh i f t p roc e s s ( r e s u l t d e l a y va r , i n t e rmed i a t e 1 r e s u l t s , o u t r e s u l t s v a r ) ;
174 for i in 0 to 2 loop
175 case l o g i c o p e r a t o r s ( i ) i s
176 when LOGIC AND =>
177 tmp := ou t r e s u l t s v a r (0 ) and o u t r e s u l t s v a r ( 1 ) ;
178 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
179 when LOGIC NAND =>
180 tmp := ou t r e s u l t s v a r (0 ) nand o u t r e s u l t s v a r ( 1 ) ;
181 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
182 when LOGIC OR =>
183 tmp := ou t r e s u l t s v a r (0 ) or o u t r e s u l t s v a r ( 1 ) ;
184 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
185 when LOGIC NOR =>
186 tmp := ou t r e s u l t s v a r (0 ) nor o u t r e s u l t s v a r ( 1 ) ;
187 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
188 when others => null ; −− NOOP
189 end case ;
190 end loop ;
191

192 i n t e rmed i a t e 2 r e s u l t s <= ou t r e s u l t s v a r ;
193 end i f ;
194

195 i n t e rmed i a t e 2 i s l a s t c hunk <= in t e rmed i a t e 1 i s l a s t c hunk ;
196 end i f ; −− r i s i n g edge

95



APPENDIX

197 end process ;
198

199 match stage 3 p : process ( c l k )
200 variable o u t r e s u l t s v a r : s t d l o g i c v e c t o r (7 downto 0 ) ;
201 variable tmp : s t d l o g i c ;
202 begin
203 i f r i s i n g e d g e ( c l k ) then
204 o u t r e s u l t s v a r := i n t e rmed i a t e 2 r e s u l t s ;
205

206 i f i n t e rmed i a t e 2 i s l a s t c hunk = ’1 ’ then
207 for i in 2 to 7 loop
208 case l o g i c o p e r a t o r s ( i ) i s
209 when LOGIC AND =>
210 tmp := ou t r e s u l t s v a r (0 ) and o u t r e s u l t s v a r ( 1 ) ;
211 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
212 when LOGIC NAND =>
213 tmp := ou t r e s u l t s v a r (0 ) nand o u t r e s u l t s v a r ( 1 ) ;
214 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
215 when LOGIC OR =>
216 tmp := ou t r e s u l t s v a r (0 ) or o u t r e s u l t s v a r ( 1 ) ;
217 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
218 when LOGIC NOR =>
219 tmp := ou t r e s u l t s v a r (0 ) nor o u t r e s u l t s v a r ( 1 ) ;
220 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
221 when others => null ; −− NOOP
222 end case ;
223 end loop ;
224 o u t r e s u l t s s i g <= ou t r e s u l t s v a r ;
225 end i f ;
226 end i f ; −− r i s i n g edge
227 end process ;
228

229

230 end behav ioura l ;

VHDL Code for the Simple Pattern Match Mod-
ule

1 l ibrary IEEE ;
2 use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
3 use IEEE . numer ic std . a l l ;
4 use work . module pkg . a l l ;
5

6 entity module pattern match s imple i s
7 port
8 (
9 c l k : in s t d l o g i c ;

10

11 i n data : in s t d l o g i c v e c t o r (511 downto 0 ) ;
12 i n s t a t e : in s t d l o g i c v e c t o r (4 downto 0 ) ; −− passed on unchanged
13 i n r e s u l t s : in s t d l o g i c v e c t o r (7 downto 0 ) ;
14

15 out data : out s t d l o g i c v e c t o r (511 downto 0 ) ;
16 ou t s t a t e : out s t d l o g i c v e c t o r (4 downto 0 ) ;
17 o u t r e s u l t s : out s t d l o g i c v e c t o r (7 downto 0)
18 ) ;
19 end module pattern match s imple ;
20

21 architecture behav ioura l of module pattern match s imple i s
22

23 type i n i t s t a t e t i s ( PHASE1, PHASE2 ) ;
24

25 −− the maximum number of chunks s t r i ng can span over
26 constant MAXCHUNKS : natura l := 29 ;
27

28

29 −− i n i t i a l i z a t i o n re l a t ed s i gna l s
30 signal i n i t s t a t e : i n i t s t a t e t := PHASE1;
31 signal match words : s t d l o g i c v e c t o r (15 downto 0 ) ; −− b i t map
32 signal match st r ing : s t d l o g i c v e c t o r (511 downto 0 ) ;
33 signal match chunk : s t d l o g i c v e c t o r (4 downto 0) := IDLE ;
34 signal l a s t chunk : s t d l o g i c v e c t o r (4 downto 0 ) ;
35

36 type l o g i c o p e r a t o r s t i s array (0 to 7) of s t d l o g i c v e c t o r (2 downto 0 ) ;
37 signal l o g i c o p e r a t o r s : l o g i c o p e r a t o r s t ;
38
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39 signal r e s u l t d e l a y : s t d l o g i c ;
40

41 signal i n t e rmed i a t e i s l a s t c hunk : s t d l o g i c ;
42 signal i n t e rmed i a t e r e s u l t s : s t d l o g i c v e c t o r (7 downto 0 ) ;
43 signal i n t e rmed ia t e data : s t d l o g i c v e c t o r (511 downto 0 ) ;
44 signal i n t e rmed i a t e s t a t e : s t d l o g i c v e c t o r (4 downto 0 ) ;
45

46 signal i n da t a r e g : s t d l o g i c v e c t o r (511 downto 0 ) ;
47 signal i n s t a t e r e g : s t d l o g i c v e c t o r (4 downto 0 ) ;
48 signal i n r e s u l t s r e g : s t d l o g i c v e c t o r (7 downto 0 ) ;
49

50 begin
51

52 input FFs p : process ( c l k )
53 begin
54 i f r i s i n g e d g e ( c l k ) then
55 i n da t a r e g <= in data ;
56 i n s t a t e r e g <= i n s t a t e ;
57 i n r e s u l t s r e g <= i n r e s u l t s ;
58 end i f ; −− r i s i n g edge
59 end process ;
60

61 −− This process passes the s i gna l s to the next module .
62 −− Except from ou t r e su l t s , which i s updated in match p .
63 output p : process ( c l k )
64 variable i n da ta va r : s t d l o g i c v e c t o r (511 downto 0 ) ;
65 variable decrement : s t d l o g i c v e c t o r (7 downto 0 ) ;
66 begin
67 i f r i s i n g e d g e ( c l k ) then
68 i n da ta va r := in da t a r e g ;
69

70 case i n s t a t e r e g i s
71 when INIT =>
72 −− decrement f i r s t byte
73 decrement :=
74 ge t pa r t (INIT DECREMENT POS, INIT DECREMENT LEN, in da ta va r ) ;
75 decrement :=
76 s t d l o g i c v e c t o r ( unsigned ( decrement ) − 1 ) ;
77 i n da ta va r :=
78 s e t p a r t (INIT DECREMENT POS, INIT DECREMENT LEN, decrement , i n da ta va r ) ;
79 when others =>
80 end case ;
81

82 i n t e rmed ia t e data <= in da ta va r ;
83 i n t e rmed i a t e s t a t e <= i n s t a t e r e g ;
84

85 out data <= inte rmed ia t e data ;
86 ou t s t a t e <= in t e rmed i a t e s t a t e ;
87 end i f ; −− r i s i n g edge
88 end process ;
89

90 −− This process i s t r i g g e r ed when the input s t a t e i s INIT and the ” i n i t decrement byte ”
91 −− i s 0. I t s e t s the match s tr ing , and which words should be ac t i v e .
92 i n i t i a l i z e p : process ( c l k )
93 begin
94 i f r i s i n g e d g e ( c l k ) then
95 i f i n s t a t e r e g = INIT
96 and unsigned ( g e t pa r t (INIT DECREMENT POS, INIT DECREMENT LEN, i n da t a r e g ) ) = 0
97 and i n i t s t a t e = PHASE1 then
98 −− t h i s c a l l i s for me!
99 −− se t the bitmap t e l l i n g which words should be ac t i v e

100 match chunk <= ge t pa r t (INIT CHUNK POS, INIT CHUNK LEN, i n da t a r e g ) ;
101 l a s t chunk <= ge t pa r t (INIT LAST CHUNK POS, INIT LAST CHUNK LEN, i n da t a r e g ) ;
102 match words <= ge t pa r t (INIT PM BITMAP POS , INIT PM BITMAP LEN, i n da t a r e g ) ;
103 l o g i c o p e r a t o r s (0 ) <= ge t pa r t ( INIT LOGIC OP0 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
104 l o g i c o p e r a t o r s (1 ) <= ge t pa r t ( INIT LOGIC OP1 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
105 l o g i c o p e r a t o r s (2 ) <= ge t pa r t ( INIT LOGIC OP2 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
106 l o g i c o p e r a t o r s (3 ) <= ge t pa r t ( INIT LOGIC OP3 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
107 l o g i c o p e r a t o r s (4 ) <= ge t pa r t ( INIT LOGIC OP4 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
108 l o g i c o p e r a t o r s (5 ) <= ge t pa r t ( INIT LOGIC OP5 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
109 l o g i c o p e r a t o r s (6 ) <= ge t pa r t ( INIT LOGIC OP6 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
110 l o g i c o p e r a t o r s (7 ) <= ge t pa r t ( INIT LOGIC OP7 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
111 i n i t s t a t e <= PHASE2;
112 e l s i f i n s t a t e r e g = INIT PHASE2 and i n i t s t a t e = PHASE2 then
113 −− s e t the match s t r ing
114 match st r ing <= in da t a r e g ;
115 i n i t s t a t e <= PHASE1;
116 e l s i f i n s t a t e r e g = RESET then
117 match chunk <= IDLE ;
118 l a s t chunk <= IDLE ;
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119 l o g i c o p e r a t o r s <= ( others => ( others => ’ 0 ’ ) ) ;
120 end i f ;
121 end i f ; −− r i s i n g edge
122 end process ;
123

124 match stage 1 p : process ( c l k )
125 variable r e s u l t d e l a y v a r : s t d l o g i c ;
126 variable o u t r e s u l t s v a r : s t d l o g i c v e c t o r (7 downto 0 ) ;
127 variable tmp re su l t s va r : s t d l o g i c v e c t o r (7 downto 0 ) ;
128 variable tmp : s t d l o g i c ;
129 begin
130 i f r i s i n g e d g e ( c l k ) then
131 r e s u l t d e l a y v a r := r e s u l t d e l a y ;
132 i n t e rmed i a t e i s l a s t c hunk <= ’0 ’ ;
133

134 i f i n s t a t e r e g = CHUNK 0 then
135 r e s u l t d e l a y v a r := ’ 1 ’ ; −− new record , r e s e t t h i s s i gna l
136 end i f ;
137

138 i f i n s t a t e r e g <= CHUNK LAST then
139 i f i n s t a t e r e g = match chunk then
140 for i in 0 to 15 loop
141 i f match words ( i ) = ’1 ’
142 and get word ( i , i n da t a r e g ) /= get word ( i , match st r ing ) then
143 r e s u l t d e l a y v a r := ’ 0 ’ ; −− mismatch
144 end i f ;
145 end loop ;
146 end i f ;
147

148 i f i n s t a t e r e g = las t chunk then
149 downsh i f t p roc e s s ( r e s u l t d e l a y va r , i n r e s u l t s r e g , o u t r e s u l t s v a r ) ;
150

151 for i in 0 to 2 loop
152 case l o g i c o p e r a t o r s ( i ) i s
153 when LOGIC AND =>
154 tmp := ou t r e s u l t s v a r (0 ) and o u t r e s u l t s v a r ( 1 ) ;
155 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
156 when LOGIC NAND =>
157 tmp := ou t r e s u l t s v a r (0 ) nand o u t r e s u l t s v a r ( 1 ) ;
158 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
159 when LOGIC OR =>
160 tmp := ou t r e s u l t s v a r (0 ) or o u t r e s u l t s v a r ( 1 ) ;
161 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
162 when LOGIC NOR =>
163 tmp := ou t r e s u l t s v a r (0 ) nor o u t r e s u l t s v a r ( 1 ) ;
164 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
165 when others => null ; −− NOOP
166 end case ;
167 end loop ;
168

169 i n t e rmed i a t e i s l a s t c hunk <= ’1 ’ ;
170 i n t e rmed i a t e r e s u l t s <= ou t r e s u l t s v a r ;
171 end i f ;
172 end i f ;
173

174 r e s u l t d e l a y <= r e s u l t d e l a y v a r ; −− delay to sync with l a s t chunk
175 end i f ; −− r i s i n g edge
176 end process ;
177

178 match stage 2 p : process ( c l k )
179 variable r e s u l t d e l a y v a r : s t d l o g i c ;
180 variable o u t r e s u l t s v a r : s t d l o g i c v e c t o r (7 downto 0 ) ;
181 variable tmp : s t d l o g i c ;
182 begin
183 i f r i s i n g e d g e ( c l k ) then
184 r e s u l t d e l a y v a r := r e s u l t d e l a y ;
185 o u t r e s u l t s v a r := i n t e rmed i a t e r e s u l t s ;
186

187 i f i n t e rmed i a t e i s l a s t c hunk = ’1 ’ then
188 for i in 3 to 7 loop
189 case l o g i c o p e r a t o r s ( i ) i s
190 when LOGIC AND =>
191 tmp := ou t r e s u l t s v a r (0 ) and o u t r e s u l t s v a r ( 1 ) ;
192 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
193 when LOGIC NAND =>
194 tmp := ou t r e s u l t s v a r (0 ) nand o u t r e s u l t s v a r ( 1 ) ;
195 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
196 when LOGIC OR =>
197 tmp := ou t r e s u l t s v a r (0 ) or o u t r e s u l t s v a r ( 1 ) ;
198 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
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199 when LOGIC NOR =>
200 tmp := ou t r e s u l t s v a r (0 ) nor o u t r e s u l t s v a r ( 1 ) ;
201 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
202 when others => null ; −− NOOP
203 end case ;
204 end loop ;
205 o u t r e s u l t s <= ou t r e s u l t s v a r ;
206 end i f ;
207 end i f ; −− r i s i n g edge
208 end process ;
209

210

211 end behav ioura l ;

VHDL Code for the Long String Pattern Match
Module

1 l ibrary IEEE ;
2 use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
3 use IEEE . numer ic std . a l l ;
4 use work . module pkg . a l l ;
5

6 entity module patte rn match sr l i s
7 port
8 (
9 c l k : in s t d l o g i c ;

10

11 i n data : in s t d l o g i c v e c t o r (511 downto 0 ) ;
12 i n s t a t e : in s t d l o g i c v e c t o r (4 downto 0 ) ; −− passed on unchanged
13 i n r e s u l t s : in s t d l o g i c v e c t o r (7 downto 0 ) ;
14

15 out data : out s t d l o g i c v e c t o r (511 downto 0 ) ;
16 ou t s t a t e : out s t d l o g i c v e c t o r (4 downto 0 ) ;
17 o u t r e s u l t s : out s t d l o g i c v e c t o r (7 downto 0)
18 ) ;
19 end module patte rn match sr l ;
20

21 architecture behav ioura l of module patte rn match sr l i s
22

23 −− the maximum number of chunks s t r i ng can span over
24 constant MAXCHUNKS : natura l := 27 ;
25

26 type match record t i s
27 record
28 match words : s t d l o g i c v e c t o r (15 downto 0 ) ;
29 match st r ing : s t d l o g i c v e c t o r (511 downto 0 ) ;
30 end record ;
31

32 −− f i r s t de f ine the type of array .
33 type match records t i s array (0 to MAXCHUNKS − 1) of match record t ;
34 type i n i t s t a t e t i s ( PHASE1, PHASE2 ) ;
35

36 −− i n i t i a l i z a t i o n re l a t ed s i gna l s
37 signal i n i t s t a t e : i n i t s t a t e t := PHASE1;
38 signal match records : match records t ;
39 signal f i r s t match chunk : s t d l o g i c v e c t o r (4 downto 0) := IDLE ;
40 signal last match chunk : s t d l o g i c v e c t o r (4 downto 0 ) ;
41 signal l a s t chunk : s t d l o g i c v e c t o r (4 downto 0 ) ;
42 signal match chunk count : i n t e g e r range 0 to MAXCHUNKS := 0 ;
43

44 signal tmp resu l t : s t d l o g i c ;
45 signal chunk counter : i n t e g e r range 0 to MAXCHUNKS := 0 ;
46

47 type l o g i c o p e r a t o r s t i s array (0 to 7) of s t d l o g i c v e c t o r (2 downto 0 ) ;
48 signal l o g i c o p e r a t o r s : l o g i c o p e r a t o r s t ;
49

50 signal i n t e rmed ia t e 1 da ta : s t d l o g i c v e c t o r (511 downto 0 ) ;
51 signal i n t e rmed i a t e 1 s t a t e : s t d l o g i c v e c t o r (4 downto 0 ) ;
52 signal i n t e rmed i a t e 1 r e s u l t s : s t d l o g i c v e c t o r (7 downto 0 ) ;
53

54 signal i n t e rmed ia t e 2 da ta : s t d l o g i c v e c t o r (511 downto 0 ) ;
55 signal i n t e rmed i a t e 2 s t a t e : s t d l o g i c v e c t o r (4 downto 0 ) ;
56 signal i n t e rmed i a t e 2 r e s u l t s : s t d l o g i c v e c t o r (7 downto 0 ) ;
57

58 signal i n t e rmed i a t e 1 i s da ta chunk : s t d l o g i c ;
59 signal i n t e rmed i a t e 1 i s l a s t c hunk : s t d l o g i c ;
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60 signal i n t e rmed i a t e 1 i s f i r s t ma t ch chunk s : s t d l o g i c ;
61

62 signal i n t e rmed i a t e 2 i s l a s t c hunk : s t d l o g i c ;
63

64 signal intermediate 1 match words : s t d l o g i c v e c t o r (15 downto 0 ) ;
65 signal i n t e rmed ia t e 1 match reco rds : s t d l o g i c v e c t o r (15 downto 0 ) ;
66

67 signal i n da t a r e g : s t d l o g i c v e c t o r (511 downto 0 ) ;
68 signal i n s t a t e r e g : s t d l o g i c v e c t o r (4 downto 0 ) ;
69 signal i n r e s u l t s r e g : s t d l o g i c v e c t o r (7 downto 0 ) ;
70

71 begin
72

73 input FFs p : process ( c l k )
74 begin
75 i f r i s i n g e d g e ( c l k ) then
76 i n da t a r e g <= in data ;
77 i n s t a t e r e g <= i n s t a t e ;
78 i n r e s u l t s r e g <= i n r e s u l t s ;
79 end i f ; −− r i s i n g edge
80 end process ;
81

82 −− This process passes the s i gna l s to the next module .
83 −− Except from ou t r e su l t s , which i s updated in match p .
84 output p : process ( c l k )
85 variable i n da ta va r : s t d l o g i c v e c t o r (511 downto 0 ) ;
86 variable decrement : s t d l o g i c v e c t o r (7 downto 0 ) ;
87 begin
88 i f r i s i n g e d g e ( c l k ) then
89 i n da ta va r := in da t a r e g ;
90

91 case i n s t a t e r e g i s
92 when INIT =>
93 −− decrement f i r s t byte
94 decrement :=
95 ge t pa r t (INIT DECREMENT POS, INIT DECREMENT LEN, in da ta va r ) ;
96 decrement :=
97 s t d l o g i c v e c t o r ( unsigned ( decrement ) − 1 ) ;
98 i n da ta va r :=
99 s e t p a r t (INIT DECREMENT POS, INIT DECREMENT LEN, decrement , i n da ta va r ) ;

100 when others =>
101 end case ;
102

103 i n t e rmed i a t e 1 s t a t e <= i n s t a t e r e g ;
104 i n t e rmed ia t e 1 da ta <= in da ta va r ;
105

106 i n t e rmed i a t e 2 s t a t e <= in t e rmed i a t e 1 s t a t e ;
107 i n t e rmed ia t e 2 da ta <= inte rmed ia t e 1 da ta ;
108

109 ou t s t a t e <= in t e rmed i a t e 2 s t a t e ;
110 out data <= inte rmed ia t e 2 da ta ;
111

112

113 end i f ; −− r i s i n g edge
114 end process ;
115

116 −− This process i s t r i g g e r ed when the input s t a t e i s INIT and the ” i n i t decrement byte ”
117 −− i s 0. I t s e t s the match s tr ing , and which words should be ac t i v e .
118 i n i t i a l i z e p : process ( c l k )
119 variable match chunk : s t d l o g i c v e c t o r (4 downto 0 ) ;
120 begin
121 i f r i s i n g e d g e ( c l k ) then
122 i f i n s t a t e r e g = INIT
123 and unsigned ( g e t pa r t (INIT DECREMENT POS, INIT DECREMENT LEN, i n da t a r e g ) ) = 0
124 and i n i t s t a t e = PHASE1 then
125 −− t h i s c a l l i s for me!
126

127 −− save f i r s t and l a s t chunk
128 match chunk := ge t pa r t (INIT CHUNK POS, INIT CHUNK LEN, i n da t a r e g ) ;
129 l a s t chunk <= ge t pa r t (INIT LAST CHUNK POS, INIT LAST CHUNK LEN, i n da t a r e g ) ;
130 i f f i r s t match chunk = IDLE then
131 f i r s t match chunk <= match chunk ;
132 end i f ;
133 last match chunk <= match chunk ;
134 l o g i c o p e r a t o r s (0 ) <= ge t pa r t ( INIT LOGIC OP0 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
135 l o g i c o p e r a t o r s (1 ) <= ge t pa r t ( INIT LOGIC OP1 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
136 l o g i c o p e r a t o r s (2 ) <= ge t pa r t ( INIT LOGIC OP2 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
137 l o g i c o p e r a t o r s (3 ) <= ge t pa r t ( INIT LOGIC OP3 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
138 l o g i c o p e r a t o r s (4 ) <= ge t pa r t ( INIT LOGIC OP4 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
139 l o g i c o p e r a t o r s (5 ) <= ge t pa r t ( INIT LOGIC OP5 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
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140 l o g i c o p e r a t o r s (6 ) <= ge t pa r t ( INIT LOGIC OP6 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
141 l o g i c o p e r a t o r s (7 ) <= ge t pa r t ( INIT LOGIC OP7 POS , INIT LOGIC OP LEN , i n da t a r e g ) ;
142

143 −− se t the match words for t h i s chunk
144 match records ( match chunk count ) . match words <=
145 ge t pa r t (INIT PM BITMAP POS , INIT PM BITMAP LEN, i n da t a r e g ) ;
146 i n i t s t a t e <= PHASE2;
147 e l s i f i n s t a t e r e g = INIT PHASE2 and i n i t s t a t e = PHASE2 then
148 −− s e t the match s t r ing for t h i s chunk
149 match records ( match chunk count ) . match st r ing <= in da t a r e g ;
150 match chunk count <= match chunk count + 1 ;
151 i n i t s t a t e <= PHASE1;
152 e l s i f i n s t a t e r e g = DONE then
153 −− r e se t intermediates
154 match chunk count <= 0 ;
155 e l s i f i n s t a t e r e g = RESET then
156 match chunk count <= 0 ;
157 f i r s t match chunk <= IDLE ;
158 last match chunk <= IDLE ;
159 l o g i c o p e r a t o r s <= ( others => ( others => ’ 0 ’ ) ) ;
160 end i f ;
161 end i f ; −− r i s i n g edge
162 end process ;
163

164 match stage 1 p : process ( c l k )
165 variable tmp : s t d l o g i c ;
166 begin
167 i f r i s i n g e d g e ( c l k ) then
168 i n t e rmed i a t e 1 i s da t a chunk <= ’0 ’ ;
169 i n t e rmed i a t e 1 i s l a s t c hunk <= ’0 ’ ;
170 i n t e rmed i a t e 1 i s f i r s t ma t ch chunk s <= ’0 ’ ;
171

172 i f i n s t a t e r e g = f i r s t match chunk then −− i f t h i s i s the f i r s t chunk
173 i n t e rmed i a t e 1 i s f i r s t ma t ch chunk s <= ’1 ’ ;
174 end i f ;
175

176

177 for i in 0 to 15 loop
178 i f match records ( chunk counter ) . match words ( i ) = ’1 ’ then
179 intermediate 1 match words ( i ) <= ’1 ’ ;
180 else
181 intermediate 1 match words ( i ) <= ’0 ’ ;
182 end i f ;
183 end loop ;
184

185 for i in 0 to 15 loop
186 i f get word ( i , i n da t a r e g ) =
187 get word ( i , match records ( chunk counter ) . match st r ing ) then
188 i n t e rmed ia t e 1 match reco rds ( i ) <= ’1 ’ ;
189 else
190 i n t e rmed ia t e 1 match reco rds ( i ) <= ’0 ’ ;
191 end i f ;
192 end loop ;
193

194 i f i n s t a t e r e g <= CHUNK LAST then
195 i f i n s t a t e r e g >= f i r s t match chunk and i n s t a t e r e g <= last match chunk then
196 i n t e rmed i a t e 1 i s da t a chunk <= ’1 ’ ;
197 chunk counter <= chunk counter + 1 ;
198 end i f ;
199 end i f ;
200

201 i f i n s t a t e r e g = las t chunk then
202 chunk counter <= 0 ;
203 i n t e rmed i a t e 1 i s l a s t c hunk <= ’1 ’ ;
204 end i f ;
205

206 i n t e rmed i a t e 1 r e s u l t s <= i n r e s u l t s r e g ;
207 end i f ; −− r i s i n g edge
208 end process ;
209

210 match stage 2 p : process ( c l k )
211 variable tmp re su l t va r : s t d l o g i c ;
212 variable o u t r e s u l t s v a r : s t d l o g i c v e c t o r (7 downto 0 ) ;
213 variable tmp : s t d l o g i c ;
214 begin
215 i f r i s i n g e d g e ( c l k ) then
216 tmp re su l t va r := tmp resu l t ;
217

218 i f i n t e rmed i a t e 1 i s f i r s t ma t ch chunk s = ’1 ’ then
219 tmp re su l t va r := ’ 1 ’ ; −− re s e t r e s u l t
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220 end i f ;
221

222 i f i n t e rmed i a t e 1 i s da ta chunk = ’1 ’ then
223 for i in 0 to 15 loop
224 i f intermediate 1 match words ( i ) = ’1 ’
225 and i n t e rmed ia t e 1 match reco rds ( i ) = ’0 ’ then
226 tmp re su l t va r := ’ 0 ’ ; −− mismatch
227 end i f ;
228 end loop ;
229 end i f ;
230

231 i f i n t e rmed i a t e 1 i s l a s t c hunk = ’1 ’ then
232 downsh i f t p roc e s s ( tmp resu l t var , i n t e rmed i a t e 1 r e s u l t s , o u t r e s u l t s v a r ) ;
233 for i in 0 to 2 loop
234 case l o g i c o p e r a t o r s ( i ) i s
235 when LOGIC AND =>
236 tmp := ou t r e s u l t s v a r (0 ) and o u t r e s u l t s v a r ( 1 ) ;
237 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
238 when LOGIC NAND =>
239 tmp := ou t r e s u l t s v a r (0 ) nand o u t r e s u l t s v a r ( 1 ) ;
240 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
241 when LOGIC OR =>
242 tmp := ou t r e s u l t s v a r (0 ) or o u t r e s u l t s v a r ( 1 ) ;
243 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
244 when LOGIC NOR =>
245 tmp := ou t r e s u l t s v a r (0 ) nor o u t r e s u l t s v a r ( 1 ) ;
246 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
247 when others => null ; −− NOOP
248 end case ;
249 end loop ;
250 end i f ;
251

252 tmp resu l t <= tmp re su l t va r ;
253 i n t e rmed i a t e 2 i s l a s t c hunk <= in t e rmed i a t e 1 i s l a s t c hunk ;
254 i n t e rmed i a t e 2 r e s u l t s <= ou t r e s u l t s v a r ;
255 end i f ; −− r i s i n g edge
256 end process ;
257

258 match stage 3 p : process ( c l k )
259 variable o u t r e s u l t s v a r : s t d l o g i c v e c t o r (7 downto 0 ) ;
260 variable tmp : s t d l o g i c ;
261 begin
262 i f r i s i n g e d g e ( c l k ) then
263 o u t r e s u l t s v a r := i n t e rmed i a t e 2 r e s u l t s ;
264

265 i f i n t e rmed i a t e 2 i s l a s t c hunk = ’1 ’ then
266 for i in 3 to 7 loop
267 case l o g i c o p e r a t o r s ( i ) i s
268 when LOGIC AND =>
269 tmp := ou t r e s u l t s v a r (0 ) and o u t r e s u l t s v a r ( 1 ) ;
270 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
271 when LOGIC NAND =>
272 tmp := ou t r e s u l t s v a r (0 ) nand o u t r e s u l t s v a r ( 1 ) ;
273 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
274 when LOGIC OR =>
275 tmp := ou t r e s u l t s v a r (0 ) or o u t r e s u l t s v a r ( 1 ) ;
276 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
277 when LOGIC NOR =>
278 tmp := ou t r e s u l t s v a r (0 ) nor o u t r e s u l t s v a r ( 1 ) ;
279 up sh i f t p r o c e s s (tmp , ou t r e s u l t s v a r , o u t r e s u l t s v a r ) ;
280 when others => null ; −− NOOP
281 end case ;
282 end loop ;
283 end i f ;
284

285 o u t r e s u l t s <= ou t r e s u l t s v a r ;
286 end i f ; −− r i s i n g edge
287 end process ;
288

289 end behav ioura l ;

GoAhead Script for Producing the Static System

1 LoadFPGA FileName=E:\GoAhead\xc6vsx475t . binFPGA ;
2

3 ClearSelection ;
4 AddToSelectionXY UpperLeftX=200 UpperLeftY=1 LowerRightX=315 LowerRightY=83;
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5 ExpandSelection ;
6 StoreCurrentSelectionAs UserSelectionType=Part ia lArea ;
7

8 AddMacro MacroName=RBB blocker ;
9 SelectMacro MacroName=RBB blocker ;

10

11 AddLibraryElementFromXDL XDLMacro=E:\GoAhead\BM\Connect4 V6 double . xdl
12 ParseXDLPortStatements=True ;
13

14 # Lef t macros
15 ClearSelection ;
16 AddToSelectionXY UpperLeftX=200 UpperLeftY=80 LowerRightX=203 LowerRightY=83;
17 AddToSelectionXY UpperLeftX=200 UpperLeftY=75 LowerRightX=203 LowerRightY=78;
18 AddToSelectionXY UpperLeftX=200 UpperLeftY=70 LowerRightX=203 LowerRightY=73;
19 AddToSelectionXY UpperLeftX=200 UpperLeftY=65 LowerRightX=203 LowerRightY=68;
20 AddToSelectionXY UpperLeftX=200 UpperLeftY=59 LowerRightX=203 LowerRightY=62;
21 AddToSelectionXY UpperLeftX=200 UpperLeftY=54 LowerRightX=203 LowerRightY=57;
22 AddToSelectionXY UpperLeftX=200 UpperLeftY=49 LowerRightX=203 LowerRightY=52;
23 AddToSelectionXY UpperLeftX=200 UpperLeftY=44 LowerRightX=203 LowerRightY=47;
24 AddToSelectionXY UpperLeftX=200 UpperLeftY=38 LowerRightX=203 LowerRightY=41;
25 AddToSelectionXY UpperLeftX=200 UpperLeftY=33 LowerRightX=203 LowerRightY=36;
26 AddToSelectionXY UpperLeftX=200 UpperLeftY=28 LowerRightX=203 LowerRightY=31;
27 AddToSelectionXY UpperLeftX=200 UpperLeftY=23 LowerRightX=203 LowerRightY=26;
28 AddToSelectionXY UpperLeftX=200 UpperLeftY=17 LowerRightX=203 LowerRightY=20;
29 AddToSelectionXY UpperLeftX=200 UpperLeftY=12 LowerRightX=203 LowerRightY=15;
30 AddToSelectionXY UpperLeftX=200 UpperLeftY=7 LowerRightX=203 LowerRightY=10;
31 AddToSelectionXY UpperLeftX=200 UpperLeftY=2 LowerRightX=203 LowerRightY=5;
32 ExpandSelection ;
33 AddMacroInstantiationInSelectedTiles SliceNumber=1
34 InstanceName=l e f t d a t a MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
35 StoreCurrentSelectionAs UserSelectionType=LeftData ;
36

37

38

39 ClearSelection ;
40 AddToSelectionXY UpperLeftX=200 UpperLeftY=43 LowerRightX=203 LowerRightY=43;
41 ExpandSelection ;
42 AddMacroInstantiationInSelectedTiles SliceNumber=1
43 InstanceName=l e f t r e s u l t s MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
44 StoreCurrentSelectionAs UserSelectionType=Le f tRe su l t s ;
45

46 ClearSelection ;
47 AddToSelectionXY UpperLeftX=200 UpperLeftY=37 LowerRightX=203 LowerRightY=37;
48 ExpandSelection ;
49 AddMacroInstantiationInSelectedTiles SliceNumber=1
50 InstanceName=l e f t s t a t e MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
51 StoreCurrentSelectionAs UserSelectionType=Le f tS ta t e ;
52

53 # Middle macros
54 ClearSelection ;
55 AddToSelectionXY UpperLeftX=254 UpperLeftY=80 LowerRightX=257 LowerRightY=83;
56 AddToSelectionXY UpperLeftX=254 UpperLeftY=75 LowerRightX=257 LowerRightY=78;
57 AddToSelectionXY UpperLeftX=254 UpperLeftY=70 LowerRightX=257 LowerRightY=73;
58 AddToSelectionXY UpperLeftX=254 UpperLeftY=65 LowerRightX=257 LowerRightY=68;
59 AddToSelectionXY UpperLeftX=254 UpperLeftY=59 LowerRightX=257 LowerRightY=62;
60 AddToSelectionXY UpperLeftX=254 UpperLeftY=54 LowerRightX=257 LowerRightY=57;
61 AddToSelectionXY UpperLeftX=254 UpperLeftY=49 LowerRightX=257 LowerRightY=52;
62 AddToSelectionXY UpperLeftX=254 UpperLeftY=44 LowerRightX=257 LowerRightY=47;
63 AddToSelectionXY UpperLeftX=254 UpperLeftY=38 LowerRightX=257 LowerRightY=41;
64 AddToSelectionXY UpperLeftX=254 UpperLeftY=33 LowerRightX=257 LowerRightY=36;
65 AddToSelectionXY UpperLeftX=254 UpperLeftY=28 LowerRightX=257 LowerRightY=31;
66 AddToSelectionXY UpperLeftX=254 UpperLeftY=23 LowerRightX=257 LowerRightY=26;
67 AddToSelectionXY UpperLeftX=254 UpperLeftY=17 LowerRightX=257 LowerRightY=20;
68 AddToSelectionXY UpperLeftX=254 UpperLeftY=12 LowerRightX=257 LowerRightY=15;
69 AddToSelectionXY UpperLeftX=254 UpperLeftY=7 LowerRightX=257 LowerRightY=10;
70 AddToSelectionXY UpperLeftX=254 UpperLeftY=2 LowerRightX=257 LowerRightY=5;
71 ExpandSelection ;
72 AddMacroInstantiationInSelectedTiles SliceNumber=1
73 InstanceName=middle data MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
74 StoreCurrentSelectionAs UserSelectionType=MiddleData ;
75

76 ClearSelection ;
77 AddToSelectionXY UpperLeftX=254 UpperLeftY=43 LowerRightX=257 LowerRightY=43;
78 ExpandSelection ;
79 AddMacroInstantiationInSelectedTiles SliceNumber=1
80 InstanceName=midd l e r e s u l t s MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
81 StoreCurrentSelectionAs UserSelectionType=MiddleResults ;
82

83 ClearSelection ;
84 AddToSelectionXY UpperLeftX=254 UpperLeftY=37 LowerRightX=257 LowerRightY=37;
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85 ExpandSelection ;
86 AddMacroInstantiationInSelectedTiles SliceNumber=1
87 InstanceName=midd l e s ta t e MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
88 StoreCurrentSelectionAs UserSelectionType=MiddleState ;
89

90 # Right macros
91 ClearSelection ;
92 AddToSelectionXY UpperLeftX=312 UpperLeftY=80 LowerRightX=315 LowerRightY=83;
93 AddToSelectionXY UpperLeftX=312 UpperLeftY=75 LowerRightX=315 LowerRightY=78;
94 AddToSelectionXY UpperLeftX=312 UpperLeftY=70 LowerRightX=315 LowerRightY=73;
95 AddToSelectionXY UpperLeftX=312 UpperLeftY=65 LowerRightX=315 LowerRightY=68;
96 AddToSelectionXY UpperLeftX=312 UpperLeftY=59 LowerRightX=315 LowerRightY=62;
97 AddToSelectionXY UpperLeftX=312 UpperLeftY=54 LowerRightX=315 LowerRightY=57;
98 AddToSelectionXY UpperLeftX=312 UpperLeftY=49 LowerRightX=315 LowerRightY=52;
99 AddToSelectionXY UpperLeftX=312 UpperLeftY=44 LowerRightX=315 LowerRightY=47;

100 AddToSelectionXY UpperLeftX=312 UpperLeftY=38 LowerRightX=315 LowerRightY=41;
101 AddToSelectionXY UpperLeftX=312 UpperLeftY=33 LowerRightX=315 LowerRightY=36;
102 AddToSelectionXY UpperLeftX=312 UpperLeftY=28 LowerRightX=315 LowerRightY=31;
103 AddToSelectionXY UpperLeftX=312 UpperLeftY=23 LowerRightX=315 LowerRightY=26;
104 AddToSelectionXY UpperLeftX=312 UpperLeftY=17 LowerRightX=315 LowerRightY=20;
105 AddToSelectionXY UpperLeftX=312 UpperLeftY=12 LowerRightX=315 LowerRightY=15;
106 AddToSelectionXY UpperLeftX=312 UpperLeftY=7 LowerRightX=315 LowerRightY=10;
107 AddToSelectionXY UpperLeftX=312 UpperLeftY=2 LowerRightX=315 LowerRightY=5;
108 ExpandSelection ;
109 AddMacroInstantiationInSelectedTiles SliceNumber=1
110 InstanceName=r i gh t da t a MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
111 StoreCurrentSelectionAs UserSelectionType=RightData ;
112

113 ClearSelection ;
114 AddToSelectionXY UpperLeftX=312 UpperLeftY=43 LowerRightX=315 LowerRightY=43;
115 ExpandSelection ;
116 AddMacroInstantiationInSelectedTiles SliceNumber=1
117 InstanceName=r i g h t r e s u l t s MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
118 StoreCurrentSelectionAs UserSelectionType=RightResu l ts ;
119

120 ClearSelection ;
121 AddToSelectionXY UpperLeftX=312 UpperLeftY=37 LowerRightX=315 LowerRightY=37;
122 ExpandSelection ;
123 AddMacroInstantiationInSelectedTiles SliceNumber=1
124 InstanceName=r i g h t s t a t e MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
125 StoreCurrentSelectionAs UserSelectionType=RightState ;
126

127 ClearSelection ;
128 AddToSelectionXY UpperLeftX=200 UpperLeftY=2 LowerRightX=315 LowerRightY=5;
129 AddToSelectionXY UpperLeftX=200 UpperLeftY=7 LowerRightX=315 LowerRightY=10;
130 AddToSelectionXY UpperLeftX=200 UpperLeftY=12 LowerRightX=315 LowerRightY=15;
131 AddToSelectionXY UpperLeftX=200 UpperLeftY=17 LowerRightX=315 LowerRightY=20;
132 AddToSelectionXY UpperLeftX=200 UpperLeftY=23 LowerRightX=315 LowerRightY=26;
133 AddToSelectionXY UpperLeftX=200 UpperLeftY=28 LowerRightX=315 LowerRightY=31;
134 AddToSelectionXY UpperLeftX=200 UpperLeftY=33 LowerRightX=315 LowerRightY=41;
135 AddToSelectionXY UpperLeftX=200 UpperLeftY=43 LowerRightX=315 LowerRightY=47;
136 AddToSelectionXY UpperLeftX=200 UpperLeftY=49 LowerRightX=315 LowerRightY=52;
137 AddToSelectionXY UpperLeftX=200 UpperLeftY=54 LowerRightX=315 LowerRightY=57;
138 AddToSelectionXY UpperLeftX=200 UpperLeftY=59 LowerRightX=315 LowerRightY=62;
139 AddToSelectionXY UpperLeftX=200 UpperLeftY=65 LowerRightX=315 LowerRightY=68;
140 AddToSelectionXY UpperLeftX=200 UpperLeftY=70 LowerRightX=315 LowerRightY=73;
141 AddToSelectionXY UpperLeftX=200 UpperLeftY=75 LowerRightX=315 LowerRightY=78;
142 AddToSelectionXY UpperLeftX=200 UpperLeftY=80 LowerRightX=315 LowerRightY=83;
143 ExpandSelection ;
144 StoreCurrentSelectionAs UserSelectionType=blockWithoutEE2andWW2 ;
145

146 SelectUserSelection UserSelectionType=Part ia lArea Keep=False ;
147 PrintProhibitStatementsForSelection =True
148 FileName=X:\ b l o c k e r t e s t \ p roh ib i t . uc f Append=False ;
149

150 SelectUserSelection UserSelectionType=blockWithoutEE2andWW2 Keep=False ;
151

152 MarkPortsInSelectionAsUsedByRegexp PortNameRegexp=WW2
153 CheckForExistence=False IncludeAllPorts=False ;
154 MarkPortsInSelectionAsUsedByRegexp PortNameRegexp=EE2
155 CheckForExistence=False IncludeAllPorts=False ;
156

157

158 SelectUserSelection UserSelectionType=Part ia lArea Keep=False ;
159 BlockSelection PrintUnblockedPorts=False
160 Prefix=RBB blocker BlockWithEndPips=True SliceNumber=0;
161 GenerateXDL FileName=X:\ b l o c k e r t e s t \ b locke r . xdl MacroNames=RBB blocker
162 IncludePorts=False IncludeDummyNets=True IncludeDesignStatement=False
163 IncludeModuleHeader=False IncludeModuleFooter=False DesignName= XILINX NMC MACRO;
164 GenerateXDL FileName=X:\ b l o c k e r t e s t \blocker FE . xdl MacroNames=RBB blocker
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165 IncludePorts=False IncludeDummyNets=True IncludeDesignStatement=True
166 IncludeModuleHeader=True IncludeModuleFooter=True DesignName= XILINX NMC MACRO;
167

168 PrintLocationConstraintsForPlacedMacros Prefix=
169 InstancePrefix= FileName=X:\ b l o c k e r t e s t \ p roh ib i t . uc f Append=True ;
170

171 # add eas t end FFs to area group , or map w i l l route badly
172 # change GROUP and PLACE in UCF f i l e to OPEN manually
173 ClearSelection ;
174 AddToSelectionXY UpperLeftX=319 UpperLeftY=1 LowerRightX=333 LowerRightY=83;
175 ExpandSelection ;
176 PrintAreaConstraint InstanceName=eas t end FFs in s t
177 FileName=X:\ b l o c k e r t e s t \ p roh ib i t . uc f Append=True ;
178

179 # and area group f o r output f i f o
180 ClearSelection ;
181 AddToSelectionXY UpperLeftX=132 UpperLeftY=1 LowerRightX=199 LowerRightY=83;
182 ExpandSelection ;
183 PrintAreaConstraint InstanceName=f i f o w512 d128 i n s t
184 FileName=X:\ b l o c k e r t e s t \ p roh ib i t . uc f Append=True ;
185

186 ShowGUI;

GoAhead Script for Producing the Partial Mod-
ules

1 LoadFPGA FileName=E:\GoAhead\ xc6v lx75t f f 484 −3.binFPGA ;
2

3 ClearSelection ;
4 AddToSelectionXY UpperLeftX=95 UpperLeftY=0 LowerRightX=165 LowerRightY=0; #north
5 AddToSelectionXY UpperLeftX=95 UpperLeftY=84 LowerRightX=165 LowerRightY=96; #south
6 AddToSelectionXY UpperLeftX=95 UpperLeftY=1 LowerRightX=133 LowerRightY=83; #west
7 AddToSelectionXY UpperLeftX=149 UpperLeftY=1 LowerRightX=165 LowerRightY=83; #eas t
8 ExpandSelection ;
9 StoreCurrentSelectionAs UserSelectionType=BlockerArea ;

10

11 AddMacro MacroName=RBB blocker ;
12 SelectMacro MacroName=RBB blocker ;
13

14 ClearSelection ;
15 AddToSelectionXY UpperLeftX=134 UpperLeftY=1 LowerRightX=148 LowerRightY=83;
16 ExpandSelection ;
17 StoreCurrentSelectionAs UserSelectionType=ModuleArea ;
18

19 AddLibraryElementFromXDL XDLMacro=˜/GoAhead/BM/Connect4 V6 double . xdl
20 ParseXDLPortStatements=True ;
21

22 # Lef t macros
23 ClearSelection ;
24 AddToSelectionXY UpperLeftX=130 UpperLeftY=80 LowerRightX=133 LowerRightY=83;
25 AddToSelectionXY UpperLeftX=130 UpperLeftY=75 LowerRightX=133 LowerRightY=78;
26 AddToSelectionXY UpperLeftX=130 UpperLeftY=70 LowerRightX=133 LowerRightY=73;
27 AddToSelectionXY UpperLeftX=130 UpperLeftY=65 LowerRightX=133 LowerRightY=68;
28 AddToSelectionXY UpperLeftX=130 UpperLeftY=59 LowerRightX=133 LowerRightY=62;
29 AddToSelectionXY UpperLeftX=130 UpperLeftY=54 LowerRightX=133 LowerRightY=57;
30 AddToSelectionXY UpperLeftX=130 UpperLeftY=49 LowerRightX=133 LowerRightY=52;
31 AddToSelectionXY UpperLeftX=130 UpperLeftY=44 LowerRightX=133 LowerRightY=47;
32 AddToSelectionXY UpperLeftX=130 UpperLeftY=38 LowerRightX=133 LowerRightY=41;
33 AddToSelectionXY UpperLeftX=130 UpperLeftY=33 LowerRightX=133 LowerRightY=36;
34 AddToSelectionXY UpperLeftX=130 UpperLeftY=28 LowerRightX=133 LowerRightY=31;
35 AddToSelectionXY UpperLeftX=130 UpperLeftY=23 LowerRightX=133 LowerRightY=26;
36 AddToSelectionXY UpperLeftX=130 UpperLeftY=17 LowerRightX=133 LowerRightY=20;
37 AddToSelectionXY UpperLeftX=130 UpperLeftY=12 LowerRightX=133 LowerRightY=15;
38 AddToSelectionXY UpperLeftX=130 UpperLeftY=7 LowerRightX=133 LowerRightY=10;
39 AddToSelectionXY UpperLeftX=130 UpperLeftY=2 LowerRightX=133 LowerRightY=5;
40 ExpandSelection ;
41 AddMacroInstantiationInSelectedTiles SliceNumber=1
42 InstanceName=l e f t d a t a MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
43 StoreCurrentSelectionAs UserSelectionType=LeftData ;
44

45 ClearSelection ;
46 AddToSelectionXY UpperLeftX=130 UpperLeftY=43 LowerRightX=133 LowerRightY=43;
47 ExpandSelection ;
48 AddMacroInstantiationInSelectedTiles SliceNumber=1
49 InstanceName=l e f t r e s u l t s MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
50 StoreCurrentSelectionAs UserSelectionType=Le f tRe su l t s ;
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51

52 ClearSelection ;
53 AddToSelectionXY UpperLeftX=130 UpperLeftY=37 LowerRightX=133 LowerRightY=37;
54 ExpandSelection ;
55 AddMacroInstantiationInSelectedTiles SliceNumber=1
56 InstanceName=l e f t s t a t e MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
57 StoreCurrentSelectionAs UserSelectionType=Le f tS ta t e ;
58

59 # Right macros
60 ClearSelection ;
61 AddToSelectionXY UpperLeftX=150 UpperLeftY=80 LowerRightX=153 LowerRightY=83;
62 AddToSelectionXY UpperLeftX=150 UpperLeftY=75 LowerRightX=153 LowerRightY=78;
63 AddToSelectionXY UpperLeftX=150 UpperLeftY=70 LowerRightX=153 LowerRightY=73;
64 AddToSelectionXY UpperLeftX=150 UpperLeftY=65 LowerRightX=153 LowerRightY=68;
65 AddToSelectionXY UpperLeftX=150 UpperLeftY=59 LowerRightX=153 LowerRightY=62;
66 AddToSelectionXY UpperLeftX=150 UpperLeftY=54 LowerRightX=153 LowerRightY=57;
67 AddToSelectionXY UpperLeftX=150 UpperLeftY=49 LowerRightX=153 LowerRightY=52;
68 AddToSelectionXY UpperLeftX=150 UpperLeftY=44 LowerRightX=153 LowerRightY=47;
69 AddToSelectionXY UpperLeftX=150 UpperLeftY=38 LowerRightX=153 LowerRightY=41;
70 AddToSelectionXY UpperLeftX=150 UpperLeftY=33 LowerRightX=153 LowerRightY=36;
71 AddToSelectionXY UpperLeftX=150 UpperLeftY=28 LowerRightX=153 LowerRightY=31;
72 AddToSelectionXY UpperLeftX=150 UpperLeftY=23 LowerRightX=153 LowerRightY=26;
73 AddToSelectionXY UpperLeftX=150 UpperLeftY=17 LowerRightX=153 LowerRightY=20;
74 AddToSelectionXY UpperLeftX=150 UpperLeftY=12 LowerRightX=153 LowerRightY=15;
75 AddToSelectionXY UpperLeftX=150 UpperLeftY=7 LowerRightX=153 LowerRightY=10;
76 AddToSelectionXY UpperLeftX=150 UpperLeftY=2 LowerRightX=153 LowerRightY=5;
77 ExpandSelection ;
78 AddMacroInstantiationInSelectedTiles SliceNumber=1
79 InstanceName=r i gh t da t a MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
80 StoreCurrentSelectionAs UserSelectionType=RightData ;
81

82 ClearSelection ;
83 AddToSelectionXY UpperLeftX=150 UpperLeftY=43 LowerRightX=153 LowerRightY=43;
84 ExpandSelection ;
85 AddMacroInstantiationInSelectedTiles SliceNumber=1
86 InstanceName=r i g h t r e s u l t s MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
87 StoreCurrentSelectionAs UserSelectionType=RightResu l ts ;
88

89 ClearSelection ;
90 AddToSelectionXY UpperLeftX=150 UpperLeftY=37 LowerRightX=153 LowerRightY=37;
91 ExpandSelection ;
92 AddMacroInstantiationInSelectedTiles SliceNumber=1
93 InstanceName=r i g h t s t a t e MacroName=Connect4 V6 double SortyBy=row SortOrder=asc ;
94 StoreCurrentSelectionAs UserSelectionType=RightState ;
95

96 ClearSelection ;
97 AddToSelectionXY UpperLeftX=130 UpperLeftY=2 LowerRightX=133 LowerRightY=5;
98 AddToSelectionXY UpperLeftX=130 UpperLeftY=7 LowerRightX=133 LowerRightY=10;
99 AddToSelectionXY UpperLeftX=130 UpperLeftY=12 LowerRightX=133 LowerRightY=15;

100 AddToSelectionXY UpperLeftX=130 UpperLeftY=17 LowerRightX=133 LowerRightY=20;
101 AddToSelectionXY UpperLeftX=130 UpperLeftY=23 LowerRightX=133 LowerRightY=26;
102 AddToSelectionXY UpperLeftX=130 UpperLeftY=28 LowerRightX=133 LowerRightY=31;
103 AddToSelectionXY UpperLeftX=130 UpperLeftY=33 LowerRightX=133 LowerRightY=41;
104 AddToSelectionXY UpperLeftX=130 UpperLeftY=43 LowerRightX=133 LowerRightY=47;
105 AddToSelectionXY UpperLeftX=130 UpperLeftY=49 LowerRightX=133 LowerRightY=52;
106 AddToSelectionXY UpperLeftX=130 UpperLeftY=54 LowerRightX=133 LowerRightY=57;
107 AddToSelectionXY UpperLeftX=130 UpperLeftY=59 LowerRightX=133 LowerRightY=62;
108 AddToSelectionXY UpperLeftX=130 UpperLeftY=65 LowerRightX=133 LowerRightY=68;
109 AddToSelectionXY UpperLeftX=130 UpperLeftY=70 LowerRightX=133 LowerRightY=73;
110 AddToSelectionXY UpperLeftX=130 UpperLeftY=75 LowerRightX=133 LowerRightY=78;
111 AddToSelectionXY UpperLeftX=130 UpperLeftY=80 LowerRightX=133 LowerRightY=83;
112 AddToSelectionXY UpperLeftX=149 UpperLeftY=2 LowerRightX=153 LowerRightY=5;
113 AddToSelectionXY UpperLeftX=149 UpperLeftY=7 LowerRightX=153 LowerRightY=10;
114 AddToSelectionXY UpperLeftX=149 UpperLeftY=12 LowerRightX=153 LowerRightY=15;
115 AddToSelectionXY UpperLeftX=149 UpperLeftY=17 LowerRightX=153 LowerRightY=20;
116 AddToSelectionXY UpperLeftX=149 UpperLeftY=23 LowerRightX=153 LowerRightY=26;
117 AddToSelectionXY UpperLeftX=149 UpperLeftY=28 LowerRightX=153 LowerRightY=31;
118 AddToSelectionXY UpperLeftX=149 UpperLeftY=33 LowerRightX=153 LowerRightY=41;
119 AddToSelectionXY UpperLeftX=149 UpperLeftY=43 LowerRightX=153 LowerRightY=47;
120 AddToSelectionXY UpperLeftX=149 UpperLeftY=49 LowerRightX=153 LowerRightY=52;
121 AddToSelectionXY UpperLeftX=149 UpperLeftY=54 LowerRightX=153 LowerRightY=57;
122 AddToSelectionXY UpperLeftX=149 UpperLeftY=59 LowerRightX=153 LowerRightY=62;
123 AddToSelectionXY UpperLeftX=149 UpperLeftY=65 LowerRightX=153 LowerRightY=68;
124 AddToSelectionXY UpperLeftX=149 UpperLeftY=70 LowerRightX=153 LowerRightY=73;
125 AddToSelectionXY UpperLeftX=149 UpperLeftY=75 LowerRightX=153 LowerRightY=78;
126 AddToSelectionXY UpperLeftX=149 UpperLeftY=80 LowerRightX=153 LowerRightY=83;
127 ExpandSelection ;
128 StoreCurrentSelectionAs UserSelectionType=blockWithoutEE2andWW2 ;
129

130 SelectUserSelection UserSelectionType=ModuleArea Keep=False ;
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131 InvertSelection ;
132 PrintProhibitStatementsForSelection ExcludeUsedSlices=True
133 FileName=X:\ b l o c k e r t e s t \ p a r t i a l sma l l d e v i c e . uc f Append=False ;
134

135 SelectUserSelection UserSelectionType=blockWithoutEE2andWW2 Keep=False ;
136 MarkPortsInSelectionAsUsedByRegexp PortNameRegexp=EE2
137 CheckForExistence=False IncludeAllPorts=False ;
138

139 SelectUserSelection UserSelectionType=BlockerArea Keep=False ;
140 BlockSelection PrintUnblockedPorts=False
141 Prefix=RBB Blocker BlockWithEndPips=True SliceNumber=0;
142

143 SelectUserSelection UserSelectionType=ModuleArea Keep=False ;
144 AddArcs From=WW2END0 To=WW2BEG0;
145 AddArcs From=WW2END1 To=WW2BEG1;
146 AddArcs From=WW2END2 To=WW2BEG2;
147 AddArcs From=WW2END3 To=WW2BEG3;
148

149 GenerateXDL FileName=X:\ b l o c k e r t e s t \ p a r t i a l b l o c k e r sma l l d e v i c e . xdl
150 MacroNames=RBB blocker IncludePorts=False IncludeDummyNets=True
151 IncludeDesignStatement=False IncludeModuleHeader=False
152 IncludeModuleFooter=False DesignName= XILINX NMC MACRO;
153 GenerateXDL FileName=X:\ b l o c k e r t e s t \ pa r t i a l b l o c k e r sma l l d e v i c e FE . xdl
154 MacroNames=RBB blocker IncludePorts=False IncludeDummyNets=True
155 IncludeDesignStatement=True IncludeModuleHeader=True
156 IncludeModuleFooter=True DesignName= XILINX NMC MACRO;
157

158 PrintLocationConstraintsForPlacedMacros Prefix= InstancePrefix=
159 FileName=X:\ b l o c k e r t e s t \ p a r t i a l sma l l d e v i c e . uc f Append=True ;
160

161 SelectUserSelection UserSelectionType=ModuleArea Keep=False ;
162 PrintAreaConstraint InstanceName=∗module wrapper∗
163 FileName=X:\ b l o c k e r t e s t \ p a r t i a l sma l l d e v i c e . uc f Append=True ;
164

165 ShowGUI;
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