
1
Copyright VHDLwhiz.com

VHDLwhiz.com

 VHDL registers UART test

interface generator - User manual

Version: 1.0.4

Date: August 18, 2024

Author: Jonas Julian Jensen

Product URL: https://vhdlwhiz.com/product/vhdl-registers-uart-test-interface-

generator

Contact email: jonas@vhdlwhiz.com

This document describes using VHDLwhiz's UART test interface generator to
produce a custom VHDL module and Python script for reading and writing FPGA
register values.

https://vhdlwhiz.com/
https://vhdlwhiz.com/product/vhdl-registers-uart-test-interface-generator
https://vhdlwhiz.com/product/vhdl-registers-uart-test-interface-generator
mailto:jonas@vhdlwhiz.com

2
Copyright VHDLwhiz.com

Table of content

License ... 3

Changelog ... 3

Description .. 4

Requirements .. 4

Protocol.. 5

gen_uart_regs.py .. 6

Generated files ... 7

uart_regs.vhd .. 8

uart_regs.py ... 9

Help menu ... 9

Setting the UART port ... 10

Listing registers ... 10

Writing to registers ... 10

Reading registers .. 11

Debugging .. 12

Using the interface in other Python scripts .. 13

instantiation_template.vho .. 13

Static RTL files ... 14

Demo projects .. 15

Lattice iCEstick ... 15

Xilinx Digilent Arty A7-35T .. 16

Xilinx Digilent Arty S7-50 .. 16

Implementation .. 17

Constraints .. 17

Known issues .. 17

3
Copyright VHDLwhiz.com

License

The MIT license covers the source code’s copyright requirements and terms of use.
Refer to the LICENSE.txt file in the Zip file for details.

Changelog

These changes refer to the project files, and this document is updated accordingly.

Version Remarks
1.0.0 Initial release
1.0.1 Fixed missing «self» reference bug when importing as uart_regs.py

as a Python module. Changed write failed printout to exception to
avoid printing to the console when running as an imported module.

1.0.2 Fix for Vivado [Synth 8-248] error when there are no out mode regs.
1.0.3 Fix Vivado Linter warning: Register has enable driven by

synchronous reset
1.0.4 Fix the corner case when receiving a malformed word with the

escape character as the last byte. The next word would also be lost
because we didn't clear recv_data_prev_is_escape when returning to
IDLE.
The gen_uart_regs.py script now allows only unique reg names.

4
Copyright VHDLwhiz.com

Description

This document describes the following files and folders:

• gen_uart_regs.py

• generated/uart_regs.vhd
• generated/uart_regs.py
• generated/instantiation_template.vho

• rtl/uart_regs_backend.vhd
• rtl/uart_rx.vhd
• rtl/uart_tx.vhd

• demo/lattice_icestick/
• demo/xilinx_arty_a7_35/
• demo/xilinx_arty_s7_50/

The gen_uart_regs.py script and supporting VHDL files in this project allow you to
generate custom interfaces for reading and writing FPGA register values of various
types and widths using UART.

You can use the generated VHDL module and Python script to read from or write to
any number of registers in your design. The UART accessible registers can have the
types std_logic, std_logic_vector, signed, or unsigned.

You can decide on the precise composition of input and output registers and types
when generating the output files using the gen_uart_regs.py script.

The Python scripts were created partially with the help of the ChatGPT artificial
intelligence tool, while the VHDL code is handcrafted.

Requirements

The scripts in this project must be run through a Python 3 interpreter and the
Pyserial package must be installed.

https://www.python.org/downloads/
https://pypi.org/project/pyserial/

5
Copyright VHDLwhiz.com

You can install Pyserial through Pip using this command:
pip install pyserial

Protocol

The VHDL files and Python script uses a data framing protocol with four control
characters:

Name Value Comment
READ_REQ 0x0A Command from the host to the FPGA to initiate a write

sequence to send all registers back over UART
START_WRITE 0x0B Marks the beginning of a write sequence in either

direction
END_WRITE 0x0C Marks the end of a write sequence in either direction
ESCAPE 0x0D Escape character used for escaping any of the control

words, including the ESCAPE character itself, when
they appear as data between the START_WRITE and
END_WRITE markers.

Any unescaped READ_REQ byte sent to the FPGA is an instruction to send all of its
UART-accessible registers (inputs and outputs) back to the host over UART. This
command is usually only issued by the uart_regs.py script.

Upon receiving this command, the FPGA will respond by sending the content of all
registers back to the host. First, the input signals, then the output signals. If their
lengths don’t add up to a multiple of 8 bits, the lower bits of the last byte will be
padded zeros.

A write sequence always starts with the START_WRITE byte and ends with the
END_WRITE byte. Any bytes between those are considered to be data bytes. If any
data bytes have the same value as a control character, the data byte must be
escaped. This means sending an extra ESCAPE character before the data byte to
indicate that it’s actually data.

If an unescaped START_WRITE arrives anywhere in the stream of bytes, it is
considered the start of a write sequence. The uart_regs_backend module uses this
information to resynchronize in case the communication gets out of sync.

https://pip.pypa.io/en/stable/installation/

6
Copyright VHDLwhiz.com

gen_uart_regs.py

This is the script you must start with to generate the interface. Below is a screenshot
of the help menu that you can get by running: python gen_uart_regs.py -h

To generate a custom interface, you must run the script with each of your desired
UART controllable registers listed as arguments. The available types are
std_logic, std_logic_vector, unsigned, and signed.

The default mode (direction) is in and the default type is std_logic_vector
unless the register is of length: 1. Then, it will default to std_logic.

Thus, if you want to create a std_logic input signal, you can use any of these
arguments:

my_sl=1
my_sl=1:in
my_sl=1:in:std_logic

7
Copyright VHDLwhiz.com

All of the above variants will result in the script generating this UART-accessible
signal:

my_slv : in std_logic;

Let’s run the script with arguments to generate an interface with several registers of
different directions, lengths, and types:

Generated files

A successful run of the gen_uart_regs.py script will produce an output folder named
generated with the three files listed below. If they already exist, they will be
overwritten.

• generated/uart_regs.vhd
• generated/uart_regs.py
• generated/instantiation_template.vho

8
Copyright VHDLwhiz.com

uart_regs.vhd

This is the custom interface module generated by the script. You need to instantiate
it in your design, where it can access the registers you want to control using UART.

Everything above the “-- UART accessible registers” section will be identical for every
uart_regs module, while the composition of port signals below that line depends on
the arguments given to the generator script.

The listing below shows the entity for the uart_regs module resulting from the
generate command example shown in the gen_uart_regs.py section.

entity uart_regs is
 generic (
 clk_hz : positive;
 baud_rate : positive := 115200
);
 port (
 clk : in std_logic;
 rst : in std_logic;

 uart_rx : in std_logic;
 uart_tx : out std_logic;

 -- UART accessible registers
 btn : in std_logic_vector(3 downto 0);
 sw : in signed(3 downto 0);
 led : out unsigned(3 downto 0);
 led0_r : out std_logic;
 led0_g : out std_logic;
 led0_b : out std_logic;
 reg0 : out std_logic_vector(9 downto 0);
 reg1 : out std_logic_vector(15 downto 0);
 reg2 : out unsigned(31 downto 0);
 reg3 : out unsigned(39 downto 0)
);
end uart_regs;

You do not need to synchronize the uart_rx signal, as that’s handled in the uart_rx.
module.

9
Copyright VHDLwhiz.com

When the module receives a read request, it will capture the values of all input and
output signals within the current clock cycle. The instantaneous snapshot is then
sent to the host over UART.

When a write happens, all output registers are updated with the new values within
the same clock cycle. It is not possible to change output signal values individually.

However, the uart_regs.py script allows the user to update only selected outputs by
first reading back the current values of all registers. It then writes back all values,
including the updated ones.

uart_regs.py

The generated/uart_regs.py file is generated together with the uart_regs VHDL module
and contains the custom register information in the header of the file. With this
script, you can read from or write to your custom registers with ease.

Help menu

Type python uart_regs.py -h to print the help menu:

10
Copyright VHDLwhiz.com

Setting the UART port

The script has options to set the UART port using the -c switch. This works on Windows and
Linux. Set it to one of the available ports listed in the help menu. To set a default port, you
can also edit the UART_PORT variable in the uart_regs.py script.

Listing registers

Information about the register mapping is placed in the header of the uart_regs.py script by
the gen_uart_regs.py script. You can list the available registers with the -l switch, as seen
below. This is a local command and will not interact with the target FPGA.

Writing to registers

You can write to any of the out mode registers by using the -w switch. Supply the
register name followed by “=” and the value given as a binary, hexadecimal, or
decimal value, as shown below.

Note that the VHDL implementation requires the script to write all output registers
simultaneously. Therefore, if you don’t specify a complete set of output registers,
the script will first perform a read from the target FPGA and then use those values
for the missing ones. The result will be that only the specified registers change.

11
Copyright VHDLwhiz.com

When you perform a write, all specified registers will change during the same clock
cycle, not as soon as they are received over UART.

Reading registers

Use the -r switch to read all register values, as shown below. The values marked in
yellow are the ones we changed in the previous write example.

Every read shows an instantaneous snapshot of all input and output registers. They
are all sampled during the same clock cycle.

12
Copyright VHDLwhiz.com

Debugging

Use the -d switch with any of the other switches if you need to debug the
communication protocol. Then, the script will print out all sent and received bytes
and tag them if they are control characters, as shown below.

13
Copyright VHDLwhiz.com

Using the interface in other Python scripts

The uart_regs.py script contains a UartRegs class that you can easily use as the
communication interface in other custom Python scripts. Simply import the class,
create an object of it, and start using the methods, as shown below.

uart_regs = UartRegs(port=args.com, baud_rate=BAUD_RATE,
debug=args.debug)
my_dict = uart_regs.read_regs()

Refer to the docstrings in the Python code for method and descriptions and return
value types.

instantiation_template.vho

The instantiation template is generated along with the uart_regs module for your
convenience. To save coding time, you can copy the module instantiation and signal
declarations into your design.

-- UART register accessor by VHDLwhiz

 constant clk_hz : integer := 100e6;

 signal clk : std_logic;
 signal rst : std_logic;
 signal uart_to_dut : std_logic;
 signal uart_from_dut : std_logic;

 -- UART accessible registers
 signal btn : std_logic_vector(3 downto 0);
 signal sw : signed(3 downto 0);
 signal led : unsigned(3 downto 0);
 signal led0_r : std_logic;
 signal led0_g : std_logic;
 signal led0_b : std_logic;
 signal reg0 : std_logic_vector(9 downto 0);
 signal reg1 : std_logic_vector(15 downto 0);
 signal reg2 : unsigned(31 downto 0);
 signal reg3 : unsigned(39 downto 0);

begin

14
Copyright VHDLwhiz.com

 -- Generated with the command:
 -- python .\gen_uart_regs.py btn=4 sw=4:in:signed led=4:out:unsigned
led0_r=1:out led0_g=1:out led0_b=1:out reg0=10:out reg1=16:out
reg2=32:out:unsigned reg3=40:out:unsigned
 UART_REGS_INST : entity work.uart_regs(rtl)
 generic map (
 clk_hz => clk_hz
)
 port map (
 clk => clk,
 rst => rst,
 uart_rx => uart_rx,
 uart_tx => uart_tx,
 btn => btn,
 sw => sw,
 led => led,
 led0_r => led0_r,
 led0_g => led0_g,
 led0_b => led0_b,
 reg0 => reg0,
 reg1 => reg1,
 reg2 => reg2,
 reg3 => reg3
);

Static RTL files

You need to include the following files in your VHDL project so that they are
compiled into the same library as the uart_regs module:

• rtl/uart_regs_backend.vhd
• rtl/uart_rx.vhd
• rtl/uart_tx.vhd

The uart_regs_backend module implements the finite-state machines that clock in
and out the register data. It uses the uart_rx and uart_tx modules to handle the
UART communication with the host.

15
Copyright VHDLwhiz.com

Demo projects

There are three demo projects included in the Zip file. They let you control the
peripherals on the different boards as well as a few larger, internal registers.

The demo folders include pre-generated uart_regs.vhd and uart_regs.py files made
specifically for those designs.

Lattice iCEstick

The demo/icecube2_icestick folder contains a register access demo implementation
for the Lattice iCEstick FPGA board.

To run through the implementation process, open the
demo/lattice_icestick/icecube2_proj/uart_regs_sbt.project file in the Lattice iCEcube2
design software.

After loading the project in the iCEcube2 GUI, click Tools→Run All to generate the
programming bitmap file.

You can use the Lattice Diamond Programmer Standalone tool to configure the
FPGA with the generated bitmap file. When Diamond Programmer opens, click
Open an existing programmer project in the welcome dialog box.

Select project file found in the Zip:
demo/lattice_icestick/diamond_programmer_project.xcf and click OK.

After the project loads, click the three dots in the File Name column, as shown
above. Browse to select the bitmap file that you generated in iCEcube2:

https://www.latticesemi.com/icestick
https://www.latticesemi.com/icecube2
https://www.latticesemi.com/programmer

16
Copyright VHDLwhiz.com

demo/lattice_icestick/icecube2_proj/uart_regs_Implmnt/sbt/outputs/bitmap/top_icestick_
bitmap.bin

Finally, with the iCEstick board plugged into a USB port on your computer, select
Design→Program to program the SPI flash and configure the FPGA.

You can now proceed to read and write registers by using the
demo/lattice_icestick/uart_regs.py script as described in the uart_regs.py section.

Xilinx Digilent Arty A7-35T

You can find the demo implementation for the Artix-7 35T Arty FPGA evaluation kit
in the demo/arty_a7_35 folder.

Open Vivado and navigate to the extracted files using the Tcl console found at the
bottom of the GUI interface. Type this command to enter the demo project folder:

cd <zip_content>/demo/arty_a7_35/vivado_proj/

Execute the create_vivado_proj.tcl Tcl script to regenerate the Vivado project:
 source ./create_vivado_proj.tcl

Click Generate Bitstream in the sidebar to run through all the implementation
steps and generate the programming bitstream file.

Finally, click Open Hardware Manager and program the FPGA through the GUI.

You can now proceed to read and write registers by using the
demo/arty_a7_35/uart_regs.py script as described in the uart_regs.py section.

Xilinx Digilent Arty S7-50

You can find the demo implementation for the Arty S7: Spartan-7 FPGA
development board in the demo/arty_s7_50 folder.

Open Vivado and navigate to the extracted files using the Tcl console found at the
bottom of the GUI interface. Type this command to enter the demo project folder:

https://digilent.com/shop/arty-a7-artix-7-fpga-development-board/
https://en.wikipedia.org/wiki/Xilinx_Vivado
https://digilent.com/shop/arty-s7-spartan-7-fpga-development-board/
https://en.wikipedia.org/wiki/Xilinx_Vivado

17
Copyright VHDLwhiz.com

cd <zip_content>/demo/arty_s7_50/vivado_proj/

Execute the create_vivado_proj.tcl Tcl script to regenerate the Vivado project:
 source ./create_vivado_proj.tcl

Click Generate Bitstream in the sidebar to run through all the implementation
steps and generate the programming bitstream file.

Finally, click Open Hardware Manager and program the FPGA through the GUI.

You can now proceed to read and write registers by using the
demo/arty_s7_50/uart_regs.py script as described in the uart_regs.py section.

Implementation

There are no specific implementation requirements.

Constraints

No specific timing constraints are needed for this design because the UART
interface is slow and treated as an asynchronous interface.

The uart_rx input to the uart_regs module is synchronized within the uart_rx
module. Thus, it doesn’t need to be synchronized in the top-level module.

Known issues

• You may need to reset the module before it can be used, depending on
whether your FPGA architecture supports default register values.

	Table of content
	License
	Changelog
	Description
	Requirements
	Protocol

	gen_uart_regs.py
	Generated files
	uart_regs.vhd
	uart_regs.py
	Help menu
	Setting the UART port
	Listing registers
	Writing to registers
	Reading registers
	Debugging
	Using the interface in other Python scripts

	instantiation_template.vho

	Static RTL files
	Demo projects
	Lattice iCEstick
	Xilinx Digilent Arty A7-35T
	Xilinx Digilent Arty S7-50

	Implementation
	Constraints

	Known issues

