
1

Copyright VHDLwhiz.com

VHDLwhiz.com

WAV audio file reader/writer

packages

Version: 1.0.0

Date: July 1, 2022

Product URL: https://vhdlwhiz.com/product/vhdl-package-wav-audio-file-

reader-writer/

Contact email: jonas@vhdlwhiz.com

This document describes how to use the wav_reader and wav_writer VHDL packages

for reading and writing uncompressed WAV audio format files.

https://vhdlwhiz.com/
https://vhdlwhiz.com/product/vhdl-package-wav-audio-file-reader-writer/
https://vhdlwhiz.com/product/vhdl-package-wav-audio-file-reader-writer/
mailto:jonas@vhdlwhiz.com

2

Copyright VHDLwhiz.com

Table of content

License... 3

Changelog ... 3

Description ... 3

Example use cases .. 4

DUT audio passthrough.. 4

Method prototypes ... 5

wav_reader_pkg.vhd ... 5

wav_writer_pkg.vhd ... 7

Zip file content ... 8

Simulating the design ... 9

Known issues .. 10

3

Copyright VHDLwhiz.com

License
The MIT license covers the source code’s copyright requirements and terms of use.

Refer to the LICENSE.txt file in the Zip file for details.

Changelog
These changes refer to the project files, and this document is updated accordingly.

Version Remarks

1.0.0 Initial release

Description
This project contains two VHDL packages for reading from or writing audio data to

WAV files in simulation.

WAV is a file format for storing audio data that's widely used on Windows-based

systems and by audio recording devices or editing software like the Adobe suite.

Despite the emergence of more efficient audio codec algorithms, WAV remains a

popular format for storing uncompressed, lossless audio data because of its

simplicity and cross-platform support.

Every WAV file begins with a Resource Interchange File Format (RIFF) header

containing information about the audio data's encoding. After this mandatory part,

there may be multiple subchunks with meta info that's not crucial for knowing how

to interpret the audio data.

Therefore, VHDLwhiz's wav_reader package ignores non-mandatory parts and skips

to the "data" subchunk containing the audio samples. Similarly, the wav_writer

package can reproduce or create a new WAV file with a mandatory RIFF header.

The VHDL packages support WAV files that are mono or stereo, have any sampling

rate, and any sample bit length, as long as it's a multiple of 8 bits.

WAV files support any type of encoding on the individual audio samples, but the

most common ones are pulse-code modulation (PCM) or 32-bit IEEE floating-point.

The wav_reader package allows you to extract the format code from the file header,

but it will not do any conversion. It reads the audio samples as-is, and it's up to the

4

Copyright VHDLwhiz.com

user of the package to interpret the data. Likewise, you may specify the format code

when using the wav_writer package to indicate the encoding of the samples.

Example use cases
The comments above the method prototype code in the VHDL files describe how

the procedures and functions in the protected types work.

Study the VHDL testbench to see a working example that reads and writes mono

and stereo WAV files with PCM and IEEE float encoding.

DUT audio passthrough
When testing audio processing modules, a typical use case is to read from one WAV

file, stream the data through the device under test (DUT), and write back the results

to a new WAV file.

That's easy to accomplish with VHDLwhiz's WAV file reader/writer packages.

The example code below shows how you can set up such a testbench.

READER_PROC : process

begin

 -- Open WAV file for reading

 reader.open_file(read_filename);

 reader.print_metainfo;

 -- Open WAV file for writing with the same header fields

 writer.open_file(

 write_filename,

 reader.get_audio_format,

 reader.get_num_channels,

 reader.get_sample_rate,

 reader.get_bits_per_sample,

 reader.get_total_samples);

 while not reader.is_empty loop

 -- Send data to the DUT

 reader.read_sample(stereo_in_l, stereo_in_r);

 -- Wait until the next sample while the DUT is processing

 wait for 1 sec / reader.get_sample_rate;

 -- Write the result to the output file

5

Copyright VHDLwhiz.com

 writer.write_sample(stereo_out_l, stereo_out_r);

 end loop;

 -- Close files

 reader.close_file;

 writer.close_file;

 wait;

end process;

First, we open the input WAV file for reading. Then, we create an output WAV file

based on the input file's header. After that, we enter a loop that reads each sample

and sends it to the DUT.

Because audio data is slow compared to the FPGA's high clock speed, the DUT will

have plenty of time to process the samples before we write its output to the second

WAV file.

Finally, we close both WAV files so that we can listen to them or analyze them using

third-party software.

Method prototypes

wav_reader_pkg.vhd
The code listing below shows the declarative region of the WAV file reader package.

package wav_reader_pkg is

 type wav_reader is protected

 -- Open the wave file for reading

 --

 -- @param filename The path to the input file

 --

 procedure open_file(filename : string);

 -- Close the wave file if open

 procedure close_file;

 -- Check if the file has been opened for reading

 --

 -- @return true if the file is open

 --

6

Copyright VHDLwhiz.com

 impure function is_open return boolean;

 -- Check if more data is available for reading from the file

 impure function is_empty return boolean;

 -- Code identifying the encoding of each sample channel

 -- 1 = Pulse-code modulation (PCM)

 -- 2 = Adaptive differential pulse-code modulation (ADPCM)

 -- 3 = IEEE floating-point number

 -- Etc.

 impure function get_audio_format return integer;

 -- The number of audio channels (mono = 1, stereo = 2)

 impure function get_num_channels return integer;

 -- The sampling rate in Hz

 impure function get_sample_rate return integer;

 -- Bits per sample, per channel

 impure function get_bits_per_sample return integer;

 -- The total number of samples in this file (sample sets, not channels)

 impure function get_total_samples return integer;

 -- The number of unread samples since opening this file

 impure function get_unread_samples return integer;

 -- Print the wave file header and other information

 procedure print_metainfo;

 -- Read audio sample (mono version)

 procedure read_sample(signal sample : out std_logic_vector);

 -- Read audio sample (stereo version)

 procedure read_sample(signal sample_l, sample_r : out std_logic_vector);

 end protected;

end package;

7

Copyright VHDLwhiz.com

wav_writer_pkg.vhd
The code listing below shows the declarative region of the WAV file writer package.

package wav_writer_pkg is

 type wav_writer is protected

 -- Open the wave file for writing

 --

 -- In addition to the filename, you need to supply information that goes into

 -- the header of the output wave file. If you are writing back samples that

 -- initially came from the wav_reader_pkg package, you can access those data

 -- from the reader's getter functions: get_audio_format, get_num_channels,

 -- get_sample_rate, get_bits_per_sample, get_total_samples,

and get_unread_samples.

 --

 -- @param filename The path to the input file

 -- @param audio_format Numeric value identifying the encoding of a sample

channel

 -- @param num_channels Mono = 1, stereo = 2

 -- @param sample_rate The sampling rate in Hz

 -- @param bits_per_sample Bits per sample, per channel (must be a multiple of

8)

 -- @param total_samples The exact number of samples you intend to write to

this file

 --

 procedure open_file(

 filename : string;

 audio_format : integer;

 num_channels : integer;

 sample_rate : integer;

 bits_per_sample : integer;

 total_samples : integer);

 -- Close the wave file if open

 --

 -- You must call this procedure after calling write_sample()

 -- total_samples number of times.

 --

 procedure close_file;

 -- Check if the file has been opened for writing

 --

 -- @return true if the file is open

 --

8

Copyright VHDLwhiz.com

 impure function is_open return boolean;

 -- The number of samples left to write based on total_samples

 impure function get_samples_left_to_write return integer;

 -- Write one audio sample (mono version)

 procedure write_sample(constant sample : in std_logic_vector);

 -- Write one audio sample set (stereo version)

 procedure write_sample(constant sample_l, sample_r : in std_logic_vector);

 end protected;

end package;

Zip file content
.

├── WAV file RW package - User Manual.pdf This document

├── wav_reader_pkg.vhd The VHDL package for reading WAV files

├── wav_writer_pkg.vhd The VHDL package for writing WAV files

├── testbench.vhd VHDL testbench for the package

├── How to run.gif Screencast guide for running the testbench

├── LICENSE.txt License agreement

├── project.mpf ModelSim/Questa project file

├── run.do ModelSim/Questa script for running the testbench

├── wave.do Wave format file for ModelSim/Questa

├── Audio_in_mono_48kHz_32b_float.wav Audio sample

└── Audio_in_stereo_48kHz_24b_PCM.wav Audio sample

9

Copyright VHDLwhiz.com

Simulating the design
There is a demo testbench in the Zip file (testbench.vhd).

The VHDL testbench should work in any capable VHDL simulator supporting the full

2008 VHDL revision, but the provided run.do script only works in ModelSim/Questa.

To run the testbench, open ModelSim/Questa and type in the simulator console:

do <path_to_extracted_zip_content>/run.do

runtb

The testbench reads two WAV files using the wav_reader and writes them back to

disk using the wav_writer package. The two input files are

Audio_in_mono_48kHz_32b_float.wav and

Audio_in_stereo_48kHz_24b_PCM.wav. The output files will be

Audio_out_mono.wav and Audio_out_stereo.wav.

The WAV header information should appear in the simulator's transcript window,

and a waveform showing the audio as an analog signal should appear, as shown

below.

10

Copyright VHDLwhiz.com

Known issues
The package is unsynthesizable and only meant for use in testbenches/simulation.

	Table of content
	License
	Changelog
	Description
	Example use cases
	DUT audio passthrough

	Method prototypes
	wav_reader_pkg.vhd
	wav_writer_pkg.vhd

	Zip file content
	Simulating the design
	Known issues

