- Vidge

VHDLwhiz.com

VHDL package: Generic list of
protected type

Version: 1.0.1
Date: March 2, 2022

Product URL: https://vhdlwhiz.com/product/vhdl-package-generic-list-of-

protected-type

Contact email: jonas@vhdlwhiz.com

This document describes how to use VHDLwhiz's generic list VHDL package to store
any data type in the simulator's dynamic memory.

Copyright VHDLwhiz.com

https://vhdlwhiz.com/
https://vhdlwhiz.com/product/vhdl-package-generic-list-of-protected-type
https://vhdlwhiz.com/product/vhdl-package-generic-list-of-protected-type
mailto:jonas@vhdlwhiz.com

Table of Content

(=] 0 I <SSP USSP TSRO PO PP
CRANEEIOE ... ettt sttt et sttt et et s b b a e b e st e sae e e et e besaeeaeenseneen
DBSCIIPEION 1ttt ettt s bt e b et e et e st e sbeesbe e beebesabesanenaeebeens
EXQMPIE USE CASES .veniiiniiiieieteteteietet ettt sttt sttt bbb

FIFO DENAVION .ttt sttt st sn e ene

LIFO DENAVION .ttt st ettt sn e ene
METNOA PrOTOLYPES ..ottt sttt sttt st st s b e st e sbesbe e s ebesbesbasasensens
ZIP FIle CONTONL...ctiiiiriiiteiereseetetere ettt sttt sttt et st s b et e b e st e sbe s s e tesbesbessaensenes
SIMUIALING the AE@SIZN c.uviiiiieieiee ettt s s eneees

KINOWIN ISSUEBS ..iiieeietttiieee e ettt e e e e e e ettubbbsesssssestatssssassssssssasssssssssssssssssssssnnsssssssssssssssnnnnsss

Copyright VHDLwhiz.com

License

The MIT license covers the source code’s copyright requirements and terms of use.
Refer to the LICENSE.txt file in the Zip file for details.

Changelog

These changes refer to the project files, and this document is updated accordingly.

Version Remarks

1.0.0 Initial release

1.0.1 Adding this user guide to the Zip (no code changes)
Description

The linked-list implementation in this package can store any data type in the
simulator’'s dynamic memory. It mimics the behavior of Python'’s list class and
supports positive and negative indexing.

The list is unidirectional, and you can read from, insert at, or delete any element.
But if you use the shorthand append(data : data type) procedure, it will add
the new data to the highest index.

In that case, the oldest element is accessible as element number 0, while the newest
element is at element -1. The negative indexing makes it easy to read from the list’s
end, even as it grows.

Consequently, index 1 would refer to the second oldest element and -2 to the
second newest. Any element in the list can be indexed from either end.

Refer to the comments above each method prototype for a description of each
subprogram, its parameters, and return values.

Compile the list using VHDL-2008 or newer because older language revisions don't
support package generics.

Example use cases

You cannot import the generic_list.vhd file directly where you want to use it, and
that's because it uses package generics that must be mapped to a data type.

Copyright VHDLwhiz.com

First, create a new VHDL file that specifies the data type that the list shall store.
Then you can import that VHDL package in your testbench to use it.

To store text strings, for example, first create a new VHDL file named string_list.vhd
containing the following code:

string list work.generic_list

(string);

Then, import the string list.vhd file in your main testbench and create an instance of
it like this:
work.string list. 5

generic_list tb
generic_list tb;

sim my_tb

list : generic_list;

The Zip contains more examples of lists that store other data types.

FIFO behavior

You can achieve a FIFO (first-in, first-out) behavior by using list.append(data) to
push and list.get(0) followed by list.delete(0) to fetch the oldest element
from the the list:

append("Amsterdam");
append("Bangkok");
append("Copenhagen");
append("Damascus™);

my_var := list.get(©0);
list.delete(0);
my_var := list.get(©0);
list.delete(9);
my var := list.get(0);

Copyright VHDLwhiz.com

list.delete(9);

my_var := list.get(©0);
list.delete(9);

Note that the list protected type doesn’t have a pop () method like Python'’s list
class. That's because language revisions prior to VHDL-2008 don't have garbage
collection. We must delete the elements after using them to prevent memory leaks.

LIFO behavior

To implement a LIFO (last-in, first-out), also known as a stack, you can simply read
from index -1 to always get the newest element:

append("Amsterdam");
append("Bangkok");
append("Copenhagen");
append("Damascus™);

my _var := list.get(-1);
list.delete(-1);
my _var := list.get(-1);
list.delete(-1);
my _var := list.get(-1);
list.delete(-1);
my _var := list.get(-1);
list.delete(-1);

Method prototypes

The code listing below shows the declarative region of the generic_list.vhd package.

generic_list
(data_type);

generic_list

Copyright VHDLwhiz.com

append(data : data_type);

insert(index : integer; data : data_type);

get(index : integer) data_type;

delete(index : integer);

clear;

integer;

Copyright VHDLwhiz.com

Zip File Content

— Binary file RW packages - User Manual.pdf This document

— generic_list_tb.vhd Self-checking testbench for the generic list
— generic_list.vhd The generic list package

— How to run.gif Screencast showing how to run the testbench
— integer_list.vhd List of integer type package

— LICENSE.txt License agreement

— project.mpf ModelSim/Questa project

— real_list.vhd List of real type package

— run.do ModelSim/Questa script for running the testbench
— slv8_list.vhd List of bytes (std_logic_vector) package

L string_list.vhd List of string type package

Simulating the design

There is a self-checking testbench in the Zip file (generic_list_tb.vhd).

The VHDL testbench should work in any capable VHDL simulator supporting the full
VHDL-2008 revision, but the provided run.do script only works in ModelSim/Questa.

To run the testbench, open ModelSim/Questa and type in the simulator console:
do <path to extracted zip content>/run.do

runtb

Known Issues

The generic list is unsynthesizable and only meant for simulation/testbenches.

Copyright VHDLwhiz.com

	Table of Content
	License
	Changelog
	Description
	Example use cases
	FIFO behavior
	LIFO behavior

	Method prototypes
	Zip File Content
	Simulating the design
	Known Issues

